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Introduction

Taylor model (TM) methods were originally developed for a practical
problem from nonlinear dynamics, range bounding of normal form defect
functions.

• Functions consist of code lists of 104 to 105 terms
• Have about the worst imaginable cancellation problem
• Are obtained via validated integration of large initial condition boxes.
Originally nearly universally considered intractable by the community.
But ... a small challenge goes a long way towards generating new ideas!
Idea: represent all functional dependencies as a pair of a polynomial P
and a remainder bound I, introduce arithmetic, and a new ODE solver.
Obtain the following properties:

• The ability to provide enclosures of any function given by a finite com-
puter code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order (n + 1) of the width of the domain.

• The ability to alleviate the dependency problem in the calculation.
• The ability to scale favorable to higher dimensional problems.
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Motion in the Tevatron

• Speed of Light: 3x108 m/sec
• Circumference: 6.28x103 m         

4x104 revs/sec.

• Need to store about 10 hours, or 4x105 sec
2x1010 revolutions total.

• 10,000 magnets in ring
2x1014 contacts with fields!

•Extremely challenging computationally                
•Need for several State-Of-The-Art Methods: 

•Phase Space Maps
•Perturbation Theory
•Lyapunov- and other Stability Theories
•High-Performance Verified Methods
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Interval Arithmetic

Amethod to perform guaranteed calculations on computer by pre-
senting all numbers by intervals.

[ ] + [ ] = [+   + ]

[ ]− [ ] = [−  − ]

[ ] · [ ] = [min(   )max(   )]
[ ][ ] = [min(   )max(   )]

Not a group because [ ]− [ ] 6= [0 0] unless  =   = .
In particular,

[ ]− [ ] = [−  − ]

[ ][ ] = [min(1  )max(1  )]

Thus, operations lead to over estimation, which can become large
with time to blow up.



Moore’s Simple 1D Function

f(x) = 1 + x5 − x4.

Study on [0, 1]. Trivial-looking, but dependency and high order.
Assumes shallow min at 0.8.
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Definitions - Taylor Models and Operations
We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D ⊂ Rv → R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let x0 be a point in D and P the
n-th order Taylor polynomial of f around x0. Let I be an interval such that

f(x) ∈ P (x− x0) + I for all x ∈ D.

Thenwe call the pair (P, I) an n-th order Taylor model of f around x0 onD.

Definition (Addition and Multiplication) Let T1,2 = (P1,2, I1,2) be
n-th order Taylor models around x0 over the domain D. We define

T1 + T2 = (P1 + P2, I1 + I2)

T1 · T2 = (P1·2, I1·2)
where P1·2 is the part of the polynomial P1 · P2 up to order n and

I1·2 = B(Pe) +B(P1) · I2 +B(P2) · I1 + I1 · I2
where Pe is the part of the polynomial P1 · P2 of orders (n + 1) to 2n, and
B(P ) denotes a bound of P on the domain D.We demand that B(P ) is at
least as sharp as direct interval evaluation of P (x− x0) on D.



Definitions - Taylor Model Intrinsics
Definition (Intrinsic Functions of Taylor Models) Let T = (P, I)
be a Taylor model of order n over the v-dimensional domain D = [a, b]
around the point x0. We define intrinsic functions for the Taylor models by
performing various manipulations that will allow the computation of Taylor
models for the intrinsics from those of the arguments. In the following,
let f(x) ∈ P (x − x0) + I be any function in the Taylor model, and let
cf = f(x0), and f̄ be defined by f̄(x) = f(x)− cf. Likewise we define P̄ by
P̄ (x−x0) = P (x−x0)− cf, so that (P̄ , I) is a Taylor model for f̄ . For the
various intrinsics, we proceed as follows.
Exponential. We first write

exp(f(x)) = exp
¡
cf + f̄(x)

¢
= exp(cf) · exp

¡
f̄(x)

¢
= exp(cf) ·

½
1 + f̄(x) +

1

2!
(f̄(x))2 + · · · + 1

k!
(f̄(x))k

+
1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢¾ ,

where 0 < θ < 1.



Definitions - Taylor Model Exponential, cont.
Taking k ≥ n, the part

exp(cf) ·
½
1 + f̄(x) +

1

2!
(f̄(x))2 + · · · + 1

n!
(f̄(x))n

¾
is merely a polynomial of f̄ , of which we can obtain the Taylor model via
Taylor model addition andmultiplication. The remainder part of exp(f(x)),
the expression

exp(cf) ·
½

1

(n + 1)!
(f̄(x))n+1

+ · · · + 1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢¾ ,

will be bounded by an interval. First observe that since the Taylor polyno-
mial of f̄ does not have a constant part, the (n + 1)-st through (k + 1)-st
powers of the Taylor model (P̄ , I) of f̄ will have vanishing polynomial part,
and thus so does the entire remainder part. The remainder bound interval
for the Lagrange remainder term



Definitions - Taylor Model Exponential, cont.

exp(cf)
1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢

can be estimated because, for any x ∈ D, P̄ (x−x0) ∈ B(P̄ ), and 0 < θ < 1,
and so

(f̄(x))k+1 exp
¡
θ · f̄(x)¢ ∈ ¡B(P̄ ) + I

¢k+1
× exp ¡[0, 1] · (B(P̄ ) + I)

¢
.

The evaluation of the “exp” term is mere standard interval arithmetic. In
the actual implementation, one may choose k = n for simplicity, but it is
not a priori clear which value of k would yield the sharpest enclosures.



Definitions - Taylor Model Arc Sine
Arcsine. Under the condition ∀x ∈ D, B(P (x − x0) + I) ⊂ (−1, 1),
using an addition formula for the arcsine, we re-write

arcsin(f(x)) = arcsin(cf) + arcsin
³
f(x) ·

q
1− c2f − cf ·

p
1− (f(x))2

´
.

Utilizing that

g(x) ≡ f(x) ·
q
1− c2f − cf ·

p
1− (f(x))2

does not have a constant part, we have

arcsin(g(x)) = g(x) +
1

3!
(g(x))3 +

32

5!
(g(x))5 +

32 · 52
7!

(g(x))7

+ · · · + 1

(k + 1)!
(g(x))k+1 · arcsin(k+1)(θ · g(x)),

where

arcsin0(a) = 1/
p
1− a2, arcsin00(a) = a/(1− a2)3/2,

arcsin(3)(a) = (1 + 2a2)/(1− a2)5/2, ...



Definitions - Taylor Model Arc Sine, Antiderivation

A recursive formula for the higher order derivatives of arcsin

arcsin(k+2)(a) =
1

1− a2
{(2k + 1)a arcsin(k+1)(a) + k2 arcsin(k)(a)}

is useful. Then, evaluating in Taylor model arithmetic yields the desired re-
sult, where again the terms involving θ only produce interval contributions.

Antiderivation. We note that a Taylor model for the integral with
respect to variable i of a function f can be obtained from the Taylor model
(P, I) of the function by merely integrating the part Pn−1 of order up to
n−1 of the polynomial, and bounding the n-th order into the new remainder
bound. Specifically, we have

∂−1i (P, I) =

µZ xi

0

Pn−1(x)dxi , (B(P − Pn−1) + I) · (bi − ai)

¶
.

Thus, given a Taylor model for a function f, the Taylor model intrinsic
functions produce a Taylor models for the composition of the respective
intrinsic with f. Furthermore, we have the following result.



TM Scaling Theorem
Theorem (Scaling Theorem) Let f, g ∈ Cn+1(D) and (Pf,h, If,h)
and (Pg,h, Ig,h) be n-th order Taylor models for f and g around xh on
xh + [−h, h]v ⊂ D. Let the remainder bounds If,h and Ig,h satisfy If,h=
O(hn+1) and Ig,h=O(hn+1). Then the Taylor models (Pf+g, If+g,h) and
(Pf ·g, If ·g,h) for the sum and products of f and g obtained via addition and
multiplication of Taylor models satisfy

If+g,h = O(hn+1), and If ·g,h = O(hn+1).

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Ps(f), Is(f),h) for s(f) obtained by the above definition
satisfies

Is(f),h = O(hn+1).

We say the Taylor model arithmetic has the (n+1)-st order scaling property.
Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof for
the intrinsics follows because all intrinsics are composed of binary operations
as well as an additional interval, the width of which scales at least with the
(n+1)-st power of a bound B of a function that scales at least linearly with
h.



Fundamental Theorem of TM Arithmetic
The scaling theorem states that a given function f can be approximated
by P with an error that scales with order (n + 1). Common mathematical
jargon. But in interval community, a related but differentmeaning of scaling
exists, namely the behavior of the overestimation of a given method to
determine the range of a function.
Theorem ( FTTMA, Fundamental Theorem of TM Arith-
metic) Let the function f :Rv→Rvbe described by a multivariate Taylor
model Pf + If over the domain D ⊂ Rv. Let the function g : Rv→R be
given by a code list comprised of finitely many elementary operations and
intrinsic functions, and let g be defined over the range of the Taylor model
Pf,+If . Let P + I be the Taylor model obtained by executing the code
list for g, beginning with the Taylor model Pf + If. Then P + I is a Taylor
model for g ◦ f.
Furthermore, if the Taylor model of f has the (n + 1)-st order scaling
property, so does the resulting Taylor model for g.
Proof . Induction over code list.
Example: Consider f with f(x) = sin2(exp(x + 1)) + cos2(exp(x + 1)).
We know f(x) = 1, but validated methods don’t.



Implementation of TM Arithmetic
Validated Implementation of TM Arithmetic exists. The following points
are important

• Strict requirements for underlying FP arithmetic

• Taylor models require cutoff threshold (garbage collection)
• Coefficients remain FP, not intervals
• Package quite extensively tested by Corliss et al.
For practical considerations, the following is important:

• Need sparsity support
• Need efficient coefficient addressing scheme
• About 50, 000 lines of code
• Language Independent Platform, coexistence in F77, C, F90, C++



Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)



Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)
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Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)
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The Linear Dominated Bounder (LDB)
• The linear part of TM polynomial is the leading part, also for range
bounding.

• The idea is easily extended to the multi-dimensional case.
• Use the linear part as a guideline for domain splitting and elimination.
• The reduction of the size of interested box works multi-dimensionally
and automatically. Thus, the reduction rate is fast.

• Even there is no linear part in the original TM, by shifting the expansion
point, normally the linear part is introduced.

• Exact bound (with rounding) is obtained if monotonic.
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Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)
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The QFB (Quadratic Fast Bounder) Algorithm
The most critical case in global optimization is to obtain a good lower
bound near local minimizer.
Let P + I be a given Taylor model in the domain D, and let P have a
positive definite Hessian H. Decompose the Taylor model as

P + I = (P −Q) + I +Q

and observe
l(P + I) ≥ l(P −Q) + l(Q) + l(I).

Choose Q quadratic such that

Qx0 =
1

2
(x− x0)

t ·H · (x− x0) with x0 ∈ D.

Then l(Qx0) = 0, and (P −Q) does not contain pure quadratic terms.
If x0 is the minimizer of quadratic part of P on D, then x0 is also the
minimizer of linear part of (P −Qx0), due to the Kuhn-Tucker conditions.
Furthermore, the lower bound of (P − Qx0), when evaluated with plain
interval evaluation, is accurate to order 3 of the original domain box.
Remark: The closer x0 is to the minimizer, the closer there is order 3
cutoff. → Determine a sequence x(n) of candidates for x0 in a “feasible
descent direction.”



Quadratic Pruning - The Idea
Extract a convex quadratic part P2 of Taylor model, write

f(x) ∈ P2(x) +R(x) + I where

P2(x) =
1

2
xt ·H · x

Want to confine the region P2(x) ≤ a with a > 0, by an interval box
[−xm, xm] with xm > 0.
Because of positive definiteness and convexity, this region is inside a
closed ellipsoidal contour surface P2(x) = a. The optimal confining
interval box touches such a region at each box side surface tangentially, so
the condition to find xm is ∇f is normal to the corresponding box surface;
namely for determining the k-th component xmk,

(∇P )i = 0 for ∀i 6= k.



Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)
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The TM based Global Optimizer, COSY-GO
has utilized various algorothms based on Taylor models.

• LDB (Linear Dominated Bounding) bounding and domain reduction
• QFB (Quadratic Fast Bounding) bounding and domain reduction for
positive definate cases (Quadratic pruning)

• Various cutoff value update schemes
And, we have completed

• Adjustment to pallarel environments with low inter-processoer commu-
nication rate

• Restart capability
• Continuation of computations while the underlying arithmetic fails
• COSY INFINITY Version 9.0 has been released
And, what we are doing further...

• High-order derivative based box rejection and the domain reduction
• Supporting high multiple precision computations for TMs



Moore’s Simple 1D Function

f(x) = 1 + x5 − x4

Study on [0, 1]. Trivial-looking, but dependency and high order.
Assumes shallow min at 0.8.

Result of COSY-GO
Mode Min Steps Remained CPU s

Enclosure Volume
LDB/QFB 0.9180800000000021799999999953 8 1.43e-7 0.004
LDB 0.9180800000000048799999999801 19 8.41e-7 0.010

naiveTM 0.9180800000000284799999997508 77 1.91e-6 0.013
IN 0.9180800000000487780468610746 13767 2.47e-3 1.702



Fig. 9. Projection of the normal form defect function. Dependence on two angle
variables for the fixed radii r1 = r2 = 5 · 10−4

Region Boxes studied CPU-time Bound Transversal Iterations

[0.2, 0.4] · 10−4 82, 930 30, 603 sec 0.859 · 10−13 2.328 3 · 108

[0.4, 0.6] · 10−4 82, 626 30, 603 sec 0.587 · 10−12 3. 407 2 · 107

[0.6, 0.9] · 10−4 64, 131 14, 441 sec 0.616 · 10−11 4.870 1 · 106

[0.9, 1.2] · 10−4 73, 701 13, 501 sec 0.372 · 10−10 8.064 5 · 105

[1.2, 1.5] · 10−4 106, 929 24, 304 sec 0.144 · 10−9 2.083 3 · 105

[1.5, 1.8] · 10−4 111, 391 26, 103 sec 0.314 · 10−9 0.95541 · 105
Table 8
Global bounds obtained for six radial regions in normal f orm space for the Tevatron.
Also computed are the guaranteed minimum transversal iterations.

London, 1992. IOP Publishing.

[3] M. Berz. Modern Map Methods in Particle Beam Physics. Academic Press, San
Diego, 1999. Also available at http://bt.pa.msu.edu/pub.

[4] M. Berz, J. Hoefkens, and K. Makino. COSY INFINITY Version 8.1 -
programming manual. Technical Report MSUHEP-20703, Department of
Physics and Astronomy, Michigan State University, East Lansing, MI 48824,
2002. see also http://cosy.pa.msu.edu.

[5] M. Berz and K. Makino. Verified integration of ODEs and flows using differential
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Applications
There are so many problems requiring optimizations.
Using COSY-GO, we have worked on

• Numerous challenging benchmark tests
• Design parameter optimizations
• Rump’s Toeplits problems
• Entropy estimates for chaotic dynamical systems
• Long-term stability estimates of the Tevatron
•Molecule packing problems
•Gravity assist interplanetary spacecraft trajectory designs
And more are, and will be, coming.

• Edge curvature design for FFAG magnets
• Complicated field computaions for beam transfer maps
• ... Any problem you can imagine...



Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)

Makino
Highlight



ODE Integration with Taylor Models
Idea: retain full dependence on initial conditions as Taylor model
(Non-verified version: big breakthrough in particle optics and beam physics,
1984 - allows to calculate "aberrations" to any order, from earlier order
three)

1. Different from other validated methods, the approach is single step -
no need for a separate coarse enclosure and subsequent verification step

2. Error due to time stepping is O(nt + 1)

3. Error due to initial variables is O(nv + 1), not O(2) as in other
methods

4. By choosing nt and nv appropriately, the error due to finite domain and
time stepping can be made arbitrarily small.

5. Overall, never leave the TM represenation until possibly the very end.
Doing so may remove higher order dependence.



Old Taylor Model based Integrators (—2004)

• High order expansion not only in time t but also in transversal
variables �x.

• Capability of weighted order computation, allowing to suppress
the expansion order in transversal variables �x.

• Shrink wrapping algorithm including blunting to control ill-
conditioned cases.

• Pre-conditioning algorithms based on the Curvilinear, QR de-
composition, and blunting pre-conditioners.



Taylor Model based Integrator COSY-VI
version 3 (2007-)

•More economical one time step integration using the reference
trajectory and the Lie derivative based flow operator on the
deviation equations.

• Non aborting mechanism when prohibited arithmetic happens
such as 1/f for 0 ∈ f.

• Improvement of step size control.
• Error parametrization of Taylor models.
• Dynamic domain decomposition.



The Volterra Equation
Describe dynamics of two conflicting populations

dx1
dt
= 2x1(1− x2),

dx2
dt
= −x2(1− x1)

Interested in initial condition

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.

Satisfies constraint condition

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant
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The Milano-Michigan ESA Project

A Collaboration of the Instituto Aerospaziale at Po-
litecnico di Milano andMichigan State University. Cur-
rently funded by the European Space Agency to

�Develop a veri�ed integrator for solar system dynam-
ics in a complete model of the solar system

� Includes in�uences of all planets, major asteroids,
general relativity, etc

�Analyze its behavior and abilities
�Apply the integrator to study the dynamics of the
Near-Earth Asteroid (99942) Apophis



Near Earth Asteroid (99942) Apophis

�A Near-Earth Asteroid discovered in 2004
�Eccentric orbit between the orbits of Venus andMars
�Apophis will have a �rst near collision with Earth on
Friday, April 13, 2029

�Apophis will have another near (???) collision with
Earth on (Monday), April 13, 2036

�The near collision in 2029 very signi�cantly alters
Apophis�orbit

The small uncertainties of Apophis�current orbit pa-
rameters, ampli�ed by the in�uence of the near collision
in 2029, makes predictions for 2036 very di¢ cult.
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(99942) Apophis - Encounter 2036

Prediction of motion of Apophis is very di¢ cult. Its
orbit is signi�cantly a¤ected by tiny perturbations:

�Detailed shape of Earth�s gravitational �eld (oblate-
ness, mountains)

�Gravitational pull of other asteroids
�Radiation pressure from Sun (even a small re�ective
shield being applied can de�ect the asteroid)

� 64 bit accuracy of numerical integrators (regardless
of veri�cation)

All these in�uences a¤ect the �nal position to the size
of more than one Earth diameter
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The Lorenz Equations

The equations describe a simplified model of unpre-
dictable turbulent flows in fluid dynamics.
Exhibits sensitive dependence on initial conditions and
chaoticity.

̇ = ( − )

̇ = (− )− 

̇ =  − 

The standard parameter values are

 = 10  =
8

3
  = 28

and  is often varied. The fixed points are

(0 0 0) (±
p
(− 1)±

p
(− 1) − 1)
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Work in Progress

• Improvement of the Taylor model arithmetic package in COSY
to allow arbitrarily high precision Taylor model computations.

—All the preparation work has been completed.
— The final system integration work is in progress.
—Upon the completion, COSY-VI and COSY-GO will be ad-
justed for utilizing it.

• Improvement of COSY-VI
—Various schemes to conduct Poincare projections
— Computations in parallel environment

• Improvement of COSY-GO
—Utilizing Genetic Algorithm based non-rigorous global opti-
mizers for better cut-off tests
∗ Such an optimizer has been implemented in COSY.
The system integration work has to be done.



Introduction High Precision Taylor Models Fixed Points Invariant Manifolds

High Precision Taylor Models

Interval world Center point with error term:

A =
n∑

i=1

ai ± aerr

Taylor Model world Polynomial with ”precision” variable:

P(x ; p) = (a0,0+a0,1 ·p+a0,2 ·p2)+(a1,0+a1,1 ·p+a1,2 ·p2) ·x+ . . .

Fits directly into existing code for sparse polynomial storage

Dynamic precision adjustment for higher order terms



Introduction High Precision Taylor Models Fixed Points Invariant Manifolds

Attractive Fixed Point

H :

(
x
y

)
7→

(
1 + y − Ax2

Bx

)
A = 1.4 and B = 0.3 in standard Hénon map, we use A = 1.422
and B = 0.3.

Order of attractive fixed point

f (00) : x = −0.0869282203452939 y = 0.2391536750716747
f (15) : x = −0.0869282203454442 y = 0.2391536750716964
f (30) : x = −0.0869282203452939 y = 0.2391536750716747
f (45) : x = −0.0869282203454442 y = 0.2391536750716964
f (60) : x = −0.0869282203452939 y = 0.2391536750716747

...
...

...
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Introduction High Precision Taylor Models Fixed Points Invariant Manifolds

Attractive Fixed Point: Results

Taylor Model Enclosure

x = 1.19578072155759658008577504

y = 0.0505219496341450949328335698421

Taylor Models HP Taylor Models Intervals

Halfwidth 10−5 10−60 10−70

Precision 16 75 75

Boxes 1 1 70, 000, 000

Time < 1 sec. ∼ 1 sec. 130 min.
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Introduction High Precision Taylor Models Fixed Points Invariant Manifolds

Attractive Fixed Point: Results

High Precision Interval Enclosure

x = 1.1957693650675503360411009839655489

352337235594806801053003707350839683285310139

y = 0.0505076164955646488882884801756161

0168414268082837062814105551657822943979601531331

Taylor Models HP Taylor Models Intervals

Halfwidth 10−5 10−60 10−70

Precision 16 75 75

Boxes 1 1 70, 000, 000

Time < 1 sec. ∼ 1 sec. 130 min.
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Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial,
add remainder bound. LDB, QFB etc.)

•Global Optimization (Use TM bounding schemes, obtain
good cutoff values quickly by using non-verified schemes)

•Quadrature (Evaluate f as TM, integrate polynomial and
remainder bound)

• Implicit Equations (Obtain TMs for implicit solutions of
TM equations)

• Superconvergent Interval Newton Method (Application of
Implicit Equations)

• Implicit ODEs and DAEs
•Complex Arithmetic
•ODEs (Obtain TMs describing dependence of final coordinates
on initial coordinates)




