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FreeMABSys

FreeMABSys is a software (library ?) dedicated to systems
biology, involving computer algebra methods.

It is open source.

It is supported by the French ANR LEDA project.

Scientific leader: François Lemaire.

It evolves from the MAPLE MABSys software.
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BLAD

The Bibliothèques Lilloises d’Algèbre
Différentielle are C libraries dedicated to
the symbolic processing of polynomial
differential equations.

They are open source (LGPL).

They are available through the MAPLE
DifferentialAlgebra package.

Joseph Fels Ritt



Introduction Chemical Reaction Systems Deterministic modeling Stochastic modeling

Relationship with MATHEMAGIX

It is planned to connect the BLAD libraries (and FreeMABSys ?)
to MATHEMAGIX. We need some help for

promoting the project to computer science students

setting up use cases
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Books

Mathematical models of chemical reactions. Érdi and Tóth.
1989

An Introduction to Nonlinear Chemical Dynamics. Epstein
and Pojman. 1998

Theoretical Systems Biology of Metabolism. Schuster. 2012
pathway
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Basic definitions

This system describes the transformation of a substrate S into a
product P, in the presence of some enzyme E . It involves four
chemical species E , S , ES and P and three reactions. E and S are
the reactants of the first reaction.

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P .

The stoichiometry matrix N involves one row per species and one
column per reaction. Its coefficient, row r and column c , is equal
to the number of molecules of species r produced by the reaction c .

N =


−1 1 1
−1 1 0

1 −1 −1
0 0 1

 .
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The stoichiometry matrix

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P . N =


−1 1 1
−1 1 0

1 −1 −1
0 0 1

 .

The stoichiometry matrix N depends on the chemical reaction sys-
tem. It does not depend on any assumption on the dynamics of the
system.



Introduction Chemical Reaction Systems Deterministic modeling Stochastic modeling

The stoichiometry matrix

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P . N =


−1 1 1
−1 1 0

1 −1 −1
0 0 1

 .

The nullspace of N provides linear conservation laws:

−E (t) + S(t) + P(t) = cst1 , E (t) + ES(t) = cst2 .

The nullspace of its transpose provides very interesting informations
too. See [Schuster et al, Nature, 2000].
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Mathematical models

At least 8 different kinetic models

time may be Continuous or Discrete.

state space may be Continuous (A(t) ∈ R is the concentration
of species A) or Discrete (A(t) ∈ N is the number of
molecules of A).

determination may be Deterministic or Stochastic.

Focus:

1 Continuous time, continuous state-space, deterministic
determination derived from the mass-action law.

2 Continuous time, discrete state-space, stochastic
determination.
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Modeling using the Mass Action Law

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P

The mathematical model is

dX

dt
= N · V

where X is the vector of the species concentrations and V is the
vector of the reaction laws. The law of the first reaction is
k1 E (t)S(t). The model is a polynomial ODE system depending
on parameters: the kinetic constants.

d

dt
E(t) = k2 ES(t)− k1 E(t) S(t) + k−1 ES(t) ,

d

dt
P(t) = k2 ES(t) ,

d

dt
ES(t) = −k2 ES(t) + k1 E(t)S(t)− k−1 ES(t) ,

d

dt
S(t) = −k1 E(t) S(t) + k−1 ES(t) .
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Mass Action based models have striking properties

An ODE system is the mathematical model of a chemical
reaction system if, and only if, in the right hand side of the
ODE which gives the evolution of any concentration A(t),
every monomial endowed with a minus sign, actually depends
on A(t).

The zero deficiency theorem gives a sufficient condition for a
system to admit a unique attractive steady state with strictly
positive coordinates. The algorithmic test is very cheap.

Generalizations by [Feinberg, 1995], [Chaves and Sontag,
2002], [Gatermann et al, 2003].
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Model reduction 1: approximation

The quasi-steady state approximation method permits to
approximate the mathematical model derived from the mass-action
law, under the assumption that reactions are split in two sets: the
slow reactions and the fast reactions.

The approximated model can be obtained by differential
elimination. In particular, the Henri (1903), Michaelis and Menten
(1913) formula is the solution of a differential elimination problem
[Boulier, Lemaire, Lefranc, Morant 2007].

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P

Red reactions are fast.

d

dt
S(t) = −Vmax S(t)

K + S(t)
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A note on the quasi-steady state approximation

In general, the QSSA is an approximation method for ODE
systems, which relies on the Tikhonov theorem.

In general, there is no algorithm to find the change of
coordinates which rewrites the ODE system into the standard
form, needed by this theorem.

In the particular case of chemical reaction systems, the change
of coordinates can be obtained algorithmically [Van
Breuseghem and Bastin, 1991].

Our contribution: a very simple formulation relying on
differential elimination.
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The Henri, Michaelis, Menten reduction, revisited

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P

Red terms are the contributions of the fast reactions in the mathe-
matical model derived from the mass-action law.

d/dt E (t) = k2 ES(t)− (k1 E (t) S(t)− k−1 ES(t)) ,
d/dt S(t) = −(k1 E (t)S(t)− k−1 ES(t)) ,
d/dt ES(t) = −k2 ES(t) + k1 E (t) S(t)− k−1 ES(t) ,
d/dt P(t) = k2 ES(t) .

The sought approximation, mainly assuming k1, k−1 � k2

d

dt
S(t) = −Vmax S(t)

K + S(t)
·

Vmax and K being constants
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The Henri, Michaelis, Menten reduction, revisited

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P

Encode the conservation of the flow by replacing the
contribution of the fast reaction by a new symbol F1(t).

d/dt E (t) = k2 ES(t)− F1(t) ,
d/dt S(t) = −F1(t) ,
d/dt ES(t) = −k2 ES(t) + F1(t) ,
d/dt P(t) = k2 ES(t) .
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The Henri, Michaelis, Menten reduction, revisited

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P

Encode the conservation of the flow by replacing the
contribution of the fast reaction by a new symbol F1(t).

Encode the speed by adding the equilibrium equation.

d/dt E (t) = k2 ES(t)− F1(t) ,
d/dt S(t) = −F1(t) ,
d/dt ES(t) = −k2 ES(t) + F1(t) ,
d/dt P(t) = k2 ES(t) ,
0 = k1 E (t)S(t)− k−1 ES(t) .
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The Henri, Michaelis, Menten reduction, revisited

E + S
k1−−−→←−−−
k−1

ES
k2−−−→ E + P

Encode the conservation of the flow by replacing the
contribution of the fast reaction by a new symbol F1(t).

Encode the speed by adding the equilibrium equation.

d/dt E (t) = k2 ES(t)− F1(t) ,
d/dt S(t) = −F1(t) ,
d/dt ES(t) = −k2 ES(t) + F1(t) ,
d/dt P(t) = k2 ES(t) ,
0 = k1 E (t)S(t)− k−1 ES(t) .

Raw formula by eliminating F1(t) from Lemaire’s DAE.

d

dt
S(t) = −ES(t)S(t)2 k1 k2 + ES(t) S(t) k−1 k2

k−1 ES(t) + S(t)2 k1 + S(t) k−1
·
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Software demonstration

The MAPLE DifferentialAlgebra
package is a general purpose package
for performing differential elimination.
Computations are performed by the
open source BLAD libraries, written in
the C programming language.

Joseph Fels Ritt

Another demonstration, relying on the specialized MAPLE
MABSys package might be given in the next talk.
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Model reduction 2: exact reduction and reparametrization

Positivity constraints are very important in mathematical models of
chemical reaction systems. Scalings preserve them.

The scalings of the ODE system permit to remove parameters.

The scalings of the associated steady point system permit to
make some parameters act on the stabilities of the steady
points only [Lemaire and Ürgüplü, 2010].
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The circadian clock of a green algae

The autoregulated gene of [Boulier, Lemaire et al. 2007, 2008].

The mathematical model derived from the mass-action law
involves n + 3 ODE depending on 2 n + 5 parameters.

Assuming polymerisation of P is fast, the reduced model (QSSA
plus exact reduction and reparametrization) involves 3 ODE only.

It involves a Hopf bifurcation if, and only if, n ≥ 9.

Ġ = θ (γ0 − G − G Pn),

Ṁ = λG + γ0 µ−M,

Ṗ =
nα (γ0 − G − G Pn) + δ (M − P)

n−1∑
i=0

(i + 1)2 Ki P
i

·

For a qualitative analysis of this system, see [Sturm and Weber,
2008]. For a recent review of other tools, see [Niu, 2011].
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Stochastic modeling

Continuous time, Discrete state-space, Stochastic determination.

A + B
k−−−→ C

The probability that the reaction gets fired in the next time
interval depends on the stochastic constant k . The variables A(t),
B(t) and C (t) are random variables which count the numbers of
molecules of species A, B and C . Numerical simulations by the
[Gillespie, 1977] algorithm.

The same average deterministic behaviour may correspond to
many different stochastic behaviours. Example

Stochastic simulations help taking into account the suprising
effects of the noise in gene expression [Vilar et al, 2002].
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Symbolic contributions to stochastic modeling

The statistical moments of the random variables which count
the numbers of molecules are solutions of a system of ODE.
See [Paulsson, 2005].

Rewriting techniques are useful for truncating this ODE
system, which is infinite, whenever a reaction involves two
reactants or more

A + B −−−→ C .
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν .
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν .

Differentiate w.r.t. z

∂

∂z
φ(z , t) =

∞∑
ν=0

ν πν(t) zν−1 .
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν .

Differentiate w.r.t. z

∂

∂z
φ(z , t) =

∞∑
ν=0

ν πν(t) zν−1 .

Evaluate at z = 1. One gets the mean EA(t) of A(t):

∂

∂z
φ(z , t)|z=1

= EA(t) =
∞∑
ν=0

ν πν(t) .
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

Now, by a “well-known” method one gets a PDE

∂

∂t
φ(z , t) = c (1− z)

∂

∂z
φ(z , t) .
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

Now, by a “well-known” method one gets a PDE

∂

∂t
φ(z , t) = c (1− z)

∂

∂z
φ(z , t) .

Differentiate w.r.t. z

∂2

∂z ∂t
φ(z , t) = −c ∂

∂z
φ(z , t) + c (1− z)

∂2

∂z2
φ(z , t) .
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

Now, by a “well-known” method one gets a PDE

∂

∂t
φ(z , t) = c (1− z)

∂

∂z
φ(z , t) .

Differentiate w.r.t. z and evaluate at z = 1:

∂2

∂z ∂t
φ(z , t)|z=1

= −c ∂

∂z
φ(z , t)|z=1

.
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Generation of the ODE system in the order 1 case

A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

Now, by a “well-known” method one gets a PDE

∂

∂t
φ(z , t) = c (1− z)

∂

∂z
φ(z , t) .

which gives
d

dt
EA(t) = −c EA(t) .
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Generation of the ODE system in the order 2 case

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.
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Generation of the ODE system in the order 2 case

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

The rhs of the PDE now has order 2

∂

∂t
φ(z , t) =

c

2
(1− z2)

∂2

∂z2
φ(z , t) .
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Generation of the ODE system in the order 2 case

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

The rhs of the PDE now has order 2

∂

∂t
φ(z , t) =

c

2
(1− z2)

∂2

∂z2
φ(z , t) .

Differentiate w.r.t. z

∂2

∂z ∂t
φ(z , t) = −c z ∂2

∂z2
φ(z , t) +

c

2
(1− z2)

∂3

∂z3
φ(z , t) .
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Generation of the ODE system in the order 2 case

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

The rhs of the PDE now has order 2

∂

∂t
φ(z , t) =

c

2
(1− z2)

∂2

∂z2
φ(z , t) .

Differentiate w.r.t. z and evaluate at z = 1

∂2

∂z ∂t
φ(z , t)|z=1

= −c ∂
2

∂z2
φ(z , t)|z=1

.
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Generation of the ODE system in the order 2 case

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(
∂

∂z
φ(z , t)|z=1

= EA(t)

)
.

The rhs of the PDE now has order 2

∂

∂t
φ(z , t) =

c

2
(1− z2)

∂2

∂z2
φ(z , t) .

We are led to an infinite cascade unless we rewrite the rhs term

d

dt
EA(t) = −c ∂

2

∂z2
φ(z , t)|z=1

.
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Breaking the infinite CASCade

Fortunately, or
unfortunately, it is not
always possible to break
the infinite cascade

However, under some
assumptions . . .
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Breaking the infinite CASCade

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(

we are bothered by
∂2

∂z2
φ(z , t)

)
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Breaking the infinite CASCade

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(

we are bothered by
∂2

∂z2
φ(z , t)

)
Assume A(t) is either 0 or 2. Then

ψ(z , t) =
def

∞∑
ν=0

ν (ν − 2)πν(t) zν = 0 .
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Breaking the infinite CASCade

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(

we are bothered by
∂2

∂z2
φ(z , t)

)
Assume A(t) is either 0 or 2. Then

ψ(z , t) =
def

∞∑
ν=0

ν (ν − 2)πν(t) zν = 0 .

One easily deduces:

ψ(z , t) = z

(
z
∂2

∂z2
φ(z , t)− ∂

∂z
φ(z , t)

)
.
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Breaking the infinite CASCade

A + A
c−−−→ ∅

Introduce a formal variable z for the species A ; for each ν ∈ N,
define πν(t) as the probability that A(t) = ν ; define

φ(z , t) =
def

∞∑
ν=0

πν(t) zν
(

we were bothered by
∂2

∂z2
φ(z , t)

)
Assume A(t) is either 0 or 2. Then

z
∂2

∂z2
φ(z , t) =

∂

∂z
φ(z , t)

hence
d

dt
EA(t) = −c EA(t) .
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Further methods

The use of Euler operators and Weyl algebra rather than
partial derivatives makes proofs simpler.

Other reduction methods as well as efficient formulas are
given in [Vidal, Petitot, Boulier, Lemaire, Kuttler, 2010]

A prototype software has been developed by M. Petitot.
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Metabolic Pathways (borrowed from a slide of S. Schuster)

[Picture removed]
back



Introduction Chemical Reaction Systems Deterministic modeling Stochastic modeling

A gene regulated by a polymer of its own protein

back
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Stochasticity in gene expression

Borrowed from [Koern et al, Nature Reviews, 2005]
[two pictures removed]
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