
Exact computations with an arithmetic known to be
approximate

MaGiX@LiX conference – 2011

Jean-Michel Muller

CNRS - Laboratoire LIP
(CNRS-INRIA-ENS Lyon-Université de Lyon)

http://perso.ens-lyon.fr/jean-michel.muller/

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 1 / 55

http://perso.ens-lyon.fr/jean-michel.muller/

Introduction Floating-Point Arithmetic

Floating-Point Arithmetic

bad reputation ;
used everywhere in scientific calculation ;
“scientific notation” of numbers :

6.02214179× 1023

The number 6.02214179 is the significand (or mantissa), and the
number 23 is the exponent.
generalization to radix β : x = mx · βex , where mx is represented in
radix β. Almost always, β is 2 or 10 ;

But there is more to say about this. . . later

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 2 / 55

Introduction Floating-Point Arithmetic

Floating-Point Arithmetic

bad reputation ;
used everywhere in scientific calculation ;
“scientific notation” of numbers :

6.02214179× 1023

The number 6.02214179 is the significand (or mantissa), and the
number 23 is the exponent.
generalization to radix β : x = mx · βex , where mx is represented in
radix β. Almost always, β is 2 or 10 ;

But there is more to say about this. . . later

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 2 / 55

Introduction Desirable properties

Desirable properties

Speed : tomorrow’s weather must be computed in less than 24 hours ;
Accuracy, Range ;
“Size” : silicon area and/or code size ;
Power consumption ;
Portability : the programs we write on a given system must run on
different systems without requiring huge modifications ;
Easiness of implementation and use : If a given arithmetic is too
arcane, nobody will use it.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 3 / 55

Introduction Famous failures

Some can do a very poor job. . .

1994 : Pentium 1 division bug :
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

Maple version 6.0. Enter 214748364810, you get 10.

Note that 2147483648 = 231 ;
Excel’2007 (first releases), compute 65535− 2−37, you get 100000 ;
November 1998, USS Yorktown warship, somebody erroneously
entered a «zero» on a keyboard → division by 0 → series of errors →
the propulsion system stopped.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 4 / 55

Introduction Famous failures

Some can do a very poor job. . .

1994 : Pentium 1 division bug :
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

Maple version 6.0. Enter 214748364810, you get 10.
Note that 2147483648 = 231 ;

Excel’2007 (first releases), compute 65535− 2−37, you get 100000 ;
November 1998, USS Yorktown warship, somebody erroneously
entered a «zero» on a keyboard → division by 0 → series of errors →
the propulsion system stopped.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 4 / 55

Introduction Famous failures

Some can do a very poor job. . .

1994 : Pentium 1 division bug :
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

Maple version 6.0. Enter 214748364810, you get 10.
Note that 2147483648 = 231 ;
Excel’2007 (first releases), compute 65535− 2−37, you get 100000 ;

November 1998, USS Yorktown warship, somebody erroneously
entered a «zero» on a keyboard → division by 0 → series of errors →
the propulsion system stopped.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 4 / 55

Introduction Famous failures

Some can do a very poor job. . .

1994 : Pentium 1 division bug :
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

Maple version 6.0. Enter 214748364810, you get 10.
Note that 2147483648 = 231 ;
Excel’2007 (first releases), compute 65535− 2−37, you get 100000 ;
November 1998, USS Yorktown warship, somebody erroneously
entered a «zero» on a keyboard → division by 0 → series of errors →
the propulsion system stopped.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 4 / 55

Introduction Famous failures

Some strange things

Setun Computer, Moscow University, 1958. 50 copies ;

radix 3 and digits −1, 0 and 1. Numbers represented using 18
« trits » ;
idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 5 / 55

Introduction Famous failures

Some strange things

Setun Computer, Moscow University, 1958. 50 copies ;
radix 3 and digits −1, 0 and 1. Numbers represented using 18
« trits » ;

idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 5 / 55

Introduction Famous failures

Some strange things

Setun Computer, Moscow University, 1958. 50 copies ;
radix 3 and digits −1, 0 and 1. Numbers represented using 18
« trits » ;
idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 5 / 55

Introduction Famous failures

Some strange things

idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n. → punched card area ;

if we wish to represent M numbers, minimize β × n knowing that
βn ≥ M.
With real variables β = e = 2.718 . . . ≈ 3. . . what is the “best”
(integral) radix ?
as soon as :

M ≥ e
5

(2/ ln(2))−(3/ ln(3)) ≈ 1.09× 1014

it is always 3

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 6 / 55

Introduction Famous failures

Some strange things

idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n. → punched card area ;
if we wish to represent M numbers, minimize β × n knowing that
βn ≥ M.

With real variables β = e = 2.718 . . . ≈ 3. . . what is the “best”
(integral) radix ?
as soon as :

M ≥ e
5

(2/ ln(2))−(3/ ln(3)) ≈ 1.09× 1014

it is always 3

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 6 / 55

Introduction Famous failures

Some strange things

idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n. → punched card area ;
if we wish to represent M numbers, minimize β × n knowing that
βn ≥ M.
With real variables β = e = 2.718 . . . ≈ 3. . . what is the “best”
(integral) radix ?

as soon as :
M ≥ e

5
(2/ ln(2))−(3/ ln(3)) ≈ 1.09× 1014

it is always 3

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 6 / 55

Introduction Famous failures

Some strange things

idea : radix β, n digits, you want to represent around M different
numbers. “Cost” : β × n. → punched card area ;
if we wish to represent M numbers, minimize β × n knowing that
βn ≥ M.
With real variables β = e = 2.718 . . . ≈ 3. . . what is the “best”
(integral) radix ?
as soon as :

M ≥ e
5

(2/ ln(2))−(3/ ln(3)) ≈ 1.09× 1014

it is always 3

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 6 / 55

Introduction Famous failures

Yes, but. . .

Building circuits with three-valued logic turned out to be very difficult. . .

. . . so that in practice, each “trit” was represented by two bits.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 7 / 55

Introduction Famous failures

Yes, but. . .

Building circuits with three-valued logic turned out to be very difficult. . .

. . . so that in practice, each “trit” was represented by two bits.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 7 / 55

Introduction Definition

Floating-Point System

Parameters :
radix (or base) β ≥ 2 (will be 2 in this presentation)
precision p ≥ 1
extremal exponents emin, emax,

A finite FP number x is represented by 2 integers :
integral significand : M, |M| ≤ βp − 1 ;
exponent e, emin ≤ e ≤ emax.

such that
x = M × βe+1−p

with |M| largest under these constraints (→ |M| ≥ βp−1, unless e = emin).
(Real) significand of x : the number m = M × β1−p, so that x = m × βe .

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 8 / 55

Introduction Definition

Normal and subnormal numbers

normal number : of absolute value ≥ βemin . The absolute value of its
integral significand is ≥ βp−1 ;
subnormal number : of absolute value < βemin . The absolute value of
its integral significand is < βp−1.

normality/subnormality encoded in the exponent.

Radix 2 : the leftmost bit of the significand of a normal number is a “1” →
no need to store it (implicit 1 convention).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 9 / 55

Introduction Definition

Subnormal numbers difficult to implement efficiently, but. . .

0 βemin βemin+1 βemin+2

0 βemin βemin+1 βemin+2

aa − b b

aa − b b

a 6= b equivalent to “computed a − b 6= 0”.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 10 / 55

Introduction Definition

IEEE-754 Standard for FP Arithmetic (1985 and 2008)

put an end to a mess (no portability, variable quality) ;
leader : W. Kahan (father of the arithmetic of the HP35 and the Intel
8087) ;
formats ;
specification of operations and conversions ;
exception handling (max+1, 1/0,

√
−2, 0/0, etc.) ;

new version of the standard : August 2008.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 11 / 55

Introduction Correct rounding

Correct rounding

Definition 1 (Correct rounding)
The user chooses a rounding function among :

round toward −∞ : RD (x) is the largest FP number ≤ x ;
round toward +∞ : RU (x) is the smallest FP number ≥ x ;
round toward zero : RZ (x) is equal to RD (x) if x ≥ 0, and to RU (x)
if x ≤ 0 ;
round to nearest : RN (x) = FP number closest to x . If exactly
halfway between two consecutive FP numbers : the one whose integral
significand is even (default mode)

Correctly rounded operation : returns what we would get by infinitely
precise operation followed by rounding.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 12 / 55

Introduction Correct rounding

Correct rounding

IEEE-754 (1985) : Correct rounding for +, −, ×, ÷, √ and some
conversions. Advantages :

if the result of an operation is exactly representable, we get it ;
if we just use the 4 arith. operations and √, deterministic arithmetic :
one can elaborate algorithms and proofs that use the specifications ;
accuracy and portability are improved ;
playing with rounding towards +∞ and −∞→ certain lower and
upper bounds : interval arithmetic.

FP arithmetic becomes a structure in itself, that can be studied.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 13 / 55

A few elementary algorithms and properties Sterbenz Lemma

First example : Strebenz Lemma

Lemma 2 (Sterbenz)
Radix β,with subnormal numbers available. Let a and b be positive FP
numbers. If a

2
≤ b ≤ 2a

then a − b is a FP number (→ computed exactly, in any rounding mode).

Proof : straightforward using the notation x = M × βe+1−p.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 14 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

Error of FP addition (Møller, Knuth, Dekker)

First result : representability. RN (x) is x rounded to nearest.

Lemma 3
Let a and b be two FP numbers. Let

s = RN (a + b)

and
r = (a + b)− s.

If no overflow when computing s, then r is a FP number.

Same thing for ×.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 15 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

Error of FP addition (Møller, Knuth, Dekker)

Proof : Assume |a| ≥ |b|,
1 s is “the” FP number nearest a + b → it is closest to a + b than a is.

Hence |(a + b)− s| ≤ |(a + b)− a|, therefore

|r | ≤ |b|.

2 denote a = Ma × βea−p+1 and b = Mb × βeb−p+1, with
|Ma|, |Mb| ≤ βp − 1, and ea ≥ eb.
a + b is multiple of βeb−p+1 ⇒ s and r are multiple of βeb−p+1 too
⇒ ∃R ∈ Z s.t.

r = R × βeb−p+1

but, |r | ≤ |b| ⇒ |R| ≤ |Mb| ≤ βp − 1⇒ r is a FP number.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 16 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

Error of FP addition (Møller, Knuth, Dekker)

Proof : Assume |a| ≥ |b|,
1 s is “the” FP number nearest a + b → it is closest to a + b than a is.

Hence |(a + b)− s| ≤ |(a + b)− a|, therefore

|r | ≤ |b|.

2 denote a = Ma × βea−p+1 and b = Mb × βeb−p+1, with
|Ma|, |Mb| ≤ βp − 1, and ea ≥ eb.
a + b is multiple of βeb−p+1 ⇒ s and r are multiple of βeb−p+1 too
⇒ ∃R ∈ Z s.t.

r = R × βeb−p+1

but, |r | ≤ |b| ⇒ |R| ≤ |Mb| ≤ βp − 1⇒ r is a FP number.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 16 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

Get r : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))
β ≤ 3, subnormal numbers available. Let a and b be FP numbers, s.t.
|a| ≥ |b|. Following algorithm : s and r such that

s + r = a + b exactly ;
s is “the” FP number that is closest to a + b.

Algorithm 1 (FastTwoSum)
s ← RN (a + b)
z ← RN (s − a)
r ← RN (b − z)

C Program 1
s = a+b;
z = s-a;
r = b-z;

Important remark : Proving the behavior of such algorithms requires use of
the correct rounding property.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 17 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

Proof in the case β = 2

s = RN (a + b)
z = RN (s − a)
t = RN (b − z)

if a and b have same sign, then |a| ≤ |a + b| ≤ |2a| hence (radix
2→ 2a is a FP number, rounding is increasing) |a| ≤ |s| ≤ |2a| →
(Sterbenz Lemma) z = s − a. Since r = (a + b)− s is a FPN and
b − z = r , we find RN (b − z) = r .
if a and b have opposite signs then

1 either |b| ≥ 1
2 |a|, which implies (Sterbenz Lemma) a+ b is a FPN, thus

s = a + b, z = b and t = 0 ;
2 or |b| < 1

2 |a|, which implies |a + b| > 1
2 |a|, hence s ≥ 1

2 |a| (radix
2→ 1

2a is a FPN, and rounding is increasing), thus (Sterbenz Lemma)
z = RN (s − a) = s − a = b − r . Since r = (a + b)− s is a FPN and
b − z = r ,we get RN (b − z) = r .

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 18 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b ;

6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)
s ← RN (a + b)
a′ ← RN (s − b)
b′ ← RN (s − a′)
δa ← RN (a − a′)
δb ← RN (b − b′)
r ← RN (δa + δb)

Knuth : ∀β, if no underflow nor over-
flow occurs then a + b = s + r , and s
is nearest a + b.

Boldo et al : (formal proof) in radix
2, underflow does not hinder the result
(overflow does).

TwoSum is optimal, in a way we are
going to explain.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 19 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b ;
6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)
s ← RN (a + b)
a′ ← RN (s − b)
b′ ← RN (s − a′)
δa ← RN (a − a′)
δb ← RN (b − b′)
r ← RN (δa + δb)

Knuth : ∀β, if no underflow nor over-
flow occurs then a + b = s + r , and s
is nearest a + b.

Boldo et al : (formal proof) in radix
2, underflow does not hinder the result
(overflow does).

TwoSum is optimal, in a way we are
going to explain.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 19 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b ;
6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)
s ← RN (a + b)
a′ ← RN (s − b)
b′ ← RN (s − a′)
δa ← RN (a − a′)
δb ← RN (b − b′)
r ← RN (δa + δb)

Knuth : ∀β, if no underflow nor over-
flow occurs then a + b = s + r , and s
is nearest a + b.

Boldo et al : (formal proof) in radix
2, underflow does not hinder the result
(overflow does).

TwoSum is optimal, in a way we are
going to explain.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 19 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b ;
6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)
s ← RN (a + b)
a′ ← RN (s − b)
b′ ← RN (s − a′)
δa ← RN (a − a′)
δb ← RN (b − b′)
r ← RN (δa + δb)

Knuth : ∀β, if no underflow nor over-
flow occurs then a + b = s + r , and s
is nearest a + b.

Boldo et al : (formal proof) in radix
2, underflow does not hinder the result
(overflow does).

TwoSum is optimal, in a way we are
going to explain.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 19 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b ;
6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)
s ← RN (a + b)
a′ ← RN (s − b)
b′ ← RN (s − a′)
δa ← RN (a − a′)
δb ← RN (b − b′)
r ← RN (δa + δb)

Knuth : ∀β, if no underflow nor over-
flow occurs then a + b = s + r , and s
is nearest a + b.

Boldo et al : (formal proof) in radix
2, underflow does not hinder the result
(overflow does).

TwoSum is optimal, in a way we are
going to explain.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 19 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

TwoSum is optimal

Assume an algorithm satisfies :
it is without tests or min/max instructions ;
it only uses rounded to nearest additions/subtractions : at step i we
compute RN (u + v) or RN (u − v) where u and v are input variables
or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum,
then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

proof : most inelegant proof award ;

480756 algorithms with 5 operations (after suppressing the most
obvious symmetries) ;
each of them tried with 2 well-chosen pairs of input values.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 20 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

TwoSum is optimal

Assume an algorithm satisfies :
it is without tests or min/max instructions ;
it only uses rounded to nearest additions/subtractions : at step i we
compute RN (u + v) or RN (u − v) where u and v are input variables
or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum,
then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

proof : most inelegant proof award ;
480756 algorithms with 5 operations (after suppressing the most
obvious symmetries) ;

each of them tried with 2 well-chosen pairs of input values.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 20 / 55

A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker)

TwoSum is optimal

Assume an algorithm satisfies :
it is without tests or min/max instructions ;
it only uses rounded to nearest additions/subtractions : at step i we
compute RN (u + v) or RN (u − v) where u and v are input variables
or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum,
then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

proof : most inelegant proof award ;
480756 algorithms with 5 operations (after suppressing the most
obvious symmetries) ;
each of them tried with 2 well-chosen pairs of input values.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 20 / 55

A few elementary algorithms and properties Adding n numbers

Adding n numbers : x1 + x2 + x3 + · · ·+ xn

Pichat, Ogita, Rump, and Oishi’s algorithm RN : rounding to nearest

Algorithm 3
s ← x1
e ← 0
for i = 2 to n do

(s, ei)← 2Sum(s, xi)
e ← RN (e + ei)

end for
return RN (s + e)

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 21 / 55

A few elementary algorithms and properties Adding n numbers

Adding n numbers : x1 + x2 + x3 + · · ·+ xn

Theorem 5 (Ogita, Rump and Oishi)
Let

u =
1
2
β−p+1

and
γn =

nu
1− nu

.

Applying the algorithm of P.,O., R., and O. to xi , 1 ≤ i ≤ n, and if nu < 1,
then, even in case of underflow (but without overflow), the final result σ
satisfies ∣∣∣∣∣σ −

n∑
i=1

xi

∣∣∣∣∣ ≤ u

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣+ γ2
n−1

n∑
i=1

|xi |.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 22 / 55

ULP : Unit in the Last Place

ULP : Unit in the Last Place

Radix β, precision p. In the following, x ∈ R and X is a FP number that
approximates x .

Definition 6
If |x | ∈ [βe , βe+1) then ulp (x) = βmax(e,emin)−p+1.

Property 1
In radix 2,

|X − x | < 1
2
ulp (x)⇒ X = RN (x).

Not true in radix ≥ 3. Not true (even in radix 2) if we replace ulp (x) by
ulp (X).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 23 / 55

ULP : Unit in the Last Place

ULP : Unit in the Last Place

Property 2
In any radix,

X = RN (x)⇒ |X − x | ≤ 1
2
ulp (x).

Property 3
In any radix,

X = RN (x)⇒ |X − x | ≤ 1
2
ulp (X).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 24 / 55

Division Newton-Raphson iteration to compute 1/b

Division using Newton-Raphson iteration and an FMA
Simplified version of an algorithm used on the Intel/HP Itanium. Precision
p, radix 2. To simplify, assume we compute 1/b. We assume 1 ≤ b < 2
(significands of normal FP numbers).

Newton-Raphson iteration to compute 1/b :

yn+1 = yn(2− byn)

we lookup y0 ≈ 1/b in a table addressed by the first (typically from 6
to 10) bits of b ;
FMA : computes RN (xy + z) (RS 6000, Power PC, Itanium. . .) ;
the NR iteration is decomposed into 2 FMA instructions :{

en = RN (1− byn)
yn+1 = RN (yn + enyn)

Notice that en+1 ≈ e2
n .

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 25 / 55

Division Newton-Raphson iteration to compute 1/b

Property 4
If ∣∣∣∣1b − yn

∣∣∣∣ < α2−k ,

where 1/2 < α ≤ 1 and k ≥ 1, then∣∣∣∣1b − yn+1

∣∣∣∣ < b
(
1
b
− yn

)2

+ 2−k−p + 2−p−1

< 2−2k+1α2 + 2−k−p + 2−p−1

⇒ it seems that we can get arbitrarily closer to error 2−p−1 (i.e.,
1/2 ulp (1/b)), without being able to show a bound below 1/2 ulp (1/b).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 26 / 55

Division Newton-Raphson iteration to compute 1/b

Example : double precision of the IEEE-754 standard
Assume p = 53 and |y0 − 1

b | < 2−8 (small table), we find
|y1 − 1/b| < 0.501× 2−14

|y2 − 1/b| < 0.51× 2−28

|y3 − 1/b| < 0.57× 2−53 = 0.57 ulp (1/b)
Going further ?

Property 5
When yn approximates 1/b within error < 1 ulp (1/b) = 2−p, then, since b
is multiple of 2−p+1 and yn is multiple of 2−p, 1− byn is multiple of
2−2p+1.
But |1− byn| < 2−p+1 → 1− byn is exactly representable in FP arithmetic
with a p-bit precision → exactly computed by one FMA.

⇒
∣∣∣∣1b − yn+1

∣∣∣∣ < b
(
1
b
− yn

)2

+ 2−p−1.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 27 / 55

Division Newton-Raphson iteration to compute 1/b

∣∣∣∣yn −
1
b

∣∣∣∣ < α2−p ⇒
∣∣∣∣yn+1 −

1
b

∣∣∣∣ < bα22−2p + 2−p−1

(assuming α < 1)

yn+1

1/b can be here

1/b must be here to be at
distance > 1

2 ulp from yn+1

1 ulp = 2−p

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 28 / 55

Division Newton-Raphson iteration to compute 1/b

What can be deduced ?

to be at distance > 1/2 ulp from yn+1, 1/b must be within
bα22−2p < b2−2p from the midpoint of two consecutive FP numbers ;
implies that distance between yn and 1/b has the form 2−p−1 + ε,
with |ε| < b2−2p ;
implies α < 1

2 + b2−p hence∣∣∣∣yn+1 −
1
b

∣∣∣∣ < (1
2

+ b2−p
)2

b2−2p + 2−p−1

so, to be at distance > 1/2 ulp from yn+1, 1/b must be within(1
2 + b2−p)2 b2−2p from the midpoint of two consecutive FP numbers.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 29 / 55

Division Newton-Raphson iteration to compute 1/b

b is a FP number between 1 et 2 ⇒ b = B/2p−1 where B ∈ N,
2p−1 < B ≤ 2p − 1 ;
the midpoint of two consecutive FP numbers in the neighborhood of
1/b has the form g = (2G + 1)/2p+1 where G ∈ N,
2p−1 ≤ G < 2p − 1 ;
we deduce ∣∣∣∣g − 1

b

∣∣∣∣ = ∣∣∣∣2BG + B − 22p

B.2p+1

∣∣∣∣
the distance between 1/b and the midpoint of two consecutive FP
numbers is a multiple of 1/(B.2p+1) = 2−2p/b. It is 6= 0

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 30 / 55

Division Newton-Raphson iteration to compute 1/b

Distance between 1
b and g , when

∣∣1
b − yn+1

∣∣ > 1
2 ulp

(1
b

)
has the form k2−2p/b, k ∈ Z, k 6= 0 ;
we must have

|k | · 2−2p

b
<

(
1
2

+ b2−p
)2

b2−2p

therefore

|k | <
(
1
2

+ b2−p
)2

b2

since b < 2, as soon as p ≥ 4, the only solution is |k | = 1 ;
moreover, for |k | = 1, elementary manipulation shows that the only
possible solution is

b = 2− 2−p+1.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 31 / 55

Division Newton-Raphson iteration to compute 1/b

How do we procede ?

we want
B = 2p − 1,

2p−1 ≤ G ≤ 2p − 1
B(2G + 1) = 22p ± 1

Only one solution : B = 2p − 1 and G = 2p−1 : comes from
22p − 1 = (2p − 1)(2p + 1) ;
except for that B (thus for the corresponding value b = B/2p−1 of b),
we are certain that yn+1 = RN (1/b) ;
for B = 2p − 1 : we try the algorithm with the two values of yn within
one ulp from 1/b (i.e. 1/2 and 1/2 + 2−p). In practice, it works
(otherwise : do dirty things).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 32 / 55

Division Newton-Raphson iteration to compute 1/b

Application : double precision (p = 53)

We start from y0 such that |y0 − 1
b | < 2−8. We compute :

e0 = RN (1− by0)
y1 = RN (y0 + e0y0)
e1 = RN (1− by1)
y2 = RN (y1 + e1y1)
e2 = RN (1− by1)
y3 = RN (y2 + e2y2) error ≤ 0.57 ulps
e3 = RN (1− by2)
y4 = RN (y3 + e3y3) 1/b rounded to nearest

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 33 / 55

Division Newton-Raphson iteration to compute 1/b

In practice : two iterations

Markstein iterations{
en = RN (1− byn)
yn+1 = RN (yn + enyn)

More accurate (“self correcting”), se-
quential

Goldschmidt iterations{
en+1 = RN (e2

n)
yn+1 = RN (yn + enyn)

Less accurate, faster (parallel)

In practice : we start with Goldschmidt iterations, and switch to Markstein
iterations for the final steps.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 34 / 55

Double roundings

Double roundings

C program :

double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;

Depending on the environment, we obtain 3.6893488147419103232e+19
or 3.6893488147419111424e+19 (which is the binary64 number closest to
the exact product).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 35 / 55

Double roundings

Double roundings

several FP formats supported in a given environment → difficult to
know in which format some operations are performed ;
may make the result of a sequence of operations difficult to predict ;
for instance, the C99 Std states :

the values of operations with floating operands and values subject
to the usual arithmetic conversions and of floating constants are
evaluated to a format whose range and precision may be greater
than required by the type.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 36 / 55

Double roundings

Double roundings

Assume the various declared variables of a program are of the same format.
Two phenomenons may occur when a wider format is available :

for implicit variables such as the result of “a+b” in “d = (a+b)*c”) :
not clear in which format they are computed ;
explicit variables may be first computed in the wider format, and then
rounded to their destination format → sometimes leads to a problem
called double rounding.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 37 / 55

Double roundings

What happened in the example ?
The exact value of a*b is 36893488147419107329. In binary :

64 bitsz }| {
100| {z }

53 bits

10000000000 01

If it is first rounded to the INTEL “double-extended” format, we get
64 bitsz }| {

100| {z }
53 bits

10000000000×4

if that intermediate value is rounded to the binary64 destination format,
this gives (round-to-nearest-even rounding mode)

100| {z }
53 bits

× 213

= 3689348814741910323210,

→ rounded down, whereas it should have been rounded up.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 38 / 55

Double roundings

Is it a problem ?

In most applications, these phenomenons are innocuous ;
they make the behavior of some numerical programs difficult to predict
(interesting examples given by Monniaux) ;
most compilers offer options that prevent this problem. However,

I restricts the portability of numerical programs : e.g., difficult to make
sure that one will always use 2Sum with the right compilation switches ;

I may have a bad impact on the accuracy of programs, since it is in
general more accurate to perform the intermediate calculations in a
wider format.

→ examine which properties remain true when double roundings occur.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 39 / 55

Double roundings

Notation

precision-p target format, and precision-(p + p′) wider “internal”
format ;
when the precision is omitted, it is p (e.g. “FPN” means “precision-p
FPN”) ;
RN k(u) means u rounded to the nearest precision-k FP number
(assuming round to nearest even) ;

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 40 / 55

Double roundings

Double rounding → the error of a + b may not be a FPN
Consider a = 1 xxxx · · · x︸ ︷︷ ︸

p−3 bits

01, where xxxx · · · x is any (p − 3)-bit bit-chain.

Also consider, b = 0.0 111111 · · · 1︸ ︷︷ ︸
p ones

= 1
2 − 2−p−1. We have :

a + b = 1xxxx ...x01︸ ︷︷ ︸
p bits

.0 111111...1︸ ︷︷ ︸
p bits

,

so that if 1 ≤ p′ ≤ p, u = RNp+p′(a + b) = 1xxxx ...x01.100...0, we have

s = RNp(u) = 1xxxx ...x10 = a + 1

Therefore,

s − (a + b) = a + 1− (a +
1
2
− 2−p−1) =

1
2

+ 2−p−1 = 0. 10000 · · · 01︸ ︷︷ ︸
p+1 bits

,

which is not exactly representable in precision-p FP arithmetic.
J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 41 / 55

Double roundings

Double roundings and double rounding biases

When the arithmetic operation x>y appears in a program :
a double rounding occurs if what is actually performed is

RN p
(
RN p+p′(x>y)

)
,

a double rounding bias occurs if a double rounding occurs and the
obtained result differs from RN p(x>y).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 42 / 55

2Sum and double roundings

2Sum and double roundings

Algorithm 4 (2Sum-with-double-roundings(a, b))

(1) s ← RN p(RN p+p′(a + b)) or RN p(a + b)
(2) a′ ← RN p(RN p+p′(s − b)) or RN p(s − b))
(3) b′ ← ◦(s − a′)
(4) δa ← RN p(RN p+p′(a − a′)) or RN p(a − a′)
(5) δb ← RN p(RN p+p′(b − b′)) or RN p(b − b′)
(6) t ← RN p(RN p+p′(δa + δb)) or RN p(δa + δb)

◦(u) : RN p(u), RN p+p′(u), or RN p(RN p+p′(u)), or any faithful
rounding.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 43 / 55

2Sum and double roundings

Theorem 7
If p ≥ 4 and p + p′, with p′ ≥ 2. If a and b are precision-p FPN, and if no
overflow occurs, then Algorithm 4 satisfies :

if no double rounding bias occurred when computing s then
t = (a + b − s) exactly ;
otherwise, t = RN p(a + b − s).

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 44 / 55

2Sum and double roundings Pichat, Rump, Ogita and Oishi’s summation algorithm

Rump, Ogita and Oishi’s cascaded summation algorithm

Algorithm 5

s ← a1
e ← 0
for i = 2 to n do

(s, ei)← 2Sum-with-double-roundings(s, ai)
e ← RN p(RN p+p′(e + ei))

end for
return RN p(RN p+p′(s + e))

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 45 / 55

2Sum and double roundings Pichat, Rump, Ogita and Oishi’s summation algorithm

Pichat, Rump, Ogita and Oishi’s summation algorithm

Theorem 8

Assuming p ≥ 8, p′ ≥ 4, and n <
1
2u′

, the final value σ returned by
Algorithm 5 satisfies∣∣∣∣∣σ −

n∑
i=1

ai

∣∣∣∣∣ ≤ (
2−p + 2−p−p′ + 2−2p−p′

)
·

n∑
i=1

ai

+ 2−2p ·
(
4n2 − 10n − 5

)
·
(
1 + 2−p′+1 +

3
200

)
·

n∑
i=1

|ai |.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 46 / 55

2Sum and double roundings Pichat, Rump, Ogita and Oishi’s summation algorithm

Rump, Ogita and Oishi’s K -fold summation algorithm
Algorithm 6 (VecSum(a), where a = (a1, a2, . . . , an))

p ← a
for i = 2 to n do

(pi , pi−1)← 2Sum(pi , pi−1)
end for
return p

Algorithm 7 (K -fold summation algorithm)

for k = 1 to K − 1 do
a← VecSum(a)

end for
c = a1
for i = 2 to n − 1 do
c ← RN (c + ai)

end for
return RN (an + c)

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 47 / 55

2Sum and double roundings Pichat, Rump, Ogita and Oishi’s summation algorithm

Rump, Ogita and Oishi’s K -fold summation algorithm

without double roundings, if 4nu < 1, the FPN σ returned by
Algorithm 7 satisfies∣∣∣∣∣σ −

n∑
i=1

ai

∣∣∣∣∣ ≤ (u + γ2
n−1)

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣+ γK
2n−2

n∑
i=1

|ai |. (1)

if a double-rounding bias occurs in the first call to VecSum, not
possible to show an error bound better than prop. to 2−2p∑n

i=1 |ai | ;

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 48 / 55

Multiplication by constants

Multiplication by “infinitely precise” constants

We want RN (Cx), where x is a FP number, and C a real constant
(i.e., known at compile-time).
Typical values of C : π, 1/π, ln(2), ln(10), e, 1/k!, Bk/k!, 1/10k ,
cos(kπ/N) and sin(kπ/N), . . .
another frequent case : C = 1

FP number (division by a constant) ;

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 49 / 55

Multiplication by constants

The algorithm

introduced by Brisebarre and M.,
Cx with correct rounding (assuming rounding to nearest even) ;
C is not a FP number ;
A correctly rounded fma instruction is available. Operands stored in a
binary FP format of precision p ;
We assume that the two following FP numbers are pre-computed :{

Ch = RN (C),
C` = RN (C − Ch),

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 50 / 55

Multiplication by constants

The algorithm

Algorithm 8 (Multiplication by C with a product and an fma)
From x, compute {

u1 = RN (C`x),
u2 = RN (Chx + u1).

Returned result : u2.

Warning ! There exist C and x s.t. u2 6= RN (Cx) – easy to build.

Fast methods for analyzing a given C

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 51 / 55

Multiplication by constants

The algorithm

Algorithm 8 (Multiplication by C with a product and an fma)
From x, compute {

u1 = RN (C`x),
u2 = RN (Chx + u1).

Returned result : u2.

Warning ! There exist C and x s.t. u2 6= RN (Cx) – easy to build.

Fast methods for analyzing a given C

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 51 / 55

Multiplication by constants

The algorithm

Algorithm 8 (Multiplication by C with a product and an fma)
From x, compute {

u1 = RN (C`x),
u2 = RN (Chx + u1).

Returned result : u2.

Warning ! There exist C and x s.t. u2 6= RN (Cx) – easy to build.

Fast methods for analyzing a given C

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 51 / 55

Multiplication by constants

Examples

Theorem 9 (Correctly rounded multiplication by π)

The algorithm always returns a correctly rounded result in double precision
with C = 2jπ, where j is any integer, provided no under/overflow occur.

Same thing with C = ln(2) ;
with C = 1/π, the only numbers x for which the algorithm does not
work in double precision are of the form

6081371451248382× 2±k .

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 52 / 55

Multiplication by constants

Conclusion

operations fully specified (the double rounding problem should partly
vanish when IEEE 754-2008 becomes widely implemented) ;
derive algorithms, as well as proofs of properties ;
formal proof investigated by several people ;

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 53 / 55

Multiplication by constants

Floating-point arithmetic on the web

W. Kahan :
http://http.cs.berkeley.edu/~wkahan/

Goldberg’s paper “What every computer scientist should know about
Floating-Point arithmetic”
http://www.validlab.com/goldberg/paper.pdf

D. Hough :
http://www.validlab.com/754R/

The Arenaire team of lab. LIP (ENS Lyon)
http://www.ens-lyon.fr/LIP/Arenaire/

my own web page
http://perso.ens-lyon.fr/jean-michel.muller/

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 54 / 55

http://http.cs.berkeley.edu/~wkahan/
http://www.validlab.com/goldberg/paper.pdf
http://www.validlab.com/754R/
http://www.ens-lyon.fr/LIP/Arenaire/
http://perso.ens-lyon.fr/jean-michel.muller/

Multiplication by constants

Books on Floating-Point Arithmetic
Michael Overton
Numerical Computing with IEEE Floating Point
Arithmetic
Siam, 2001

Bo Einarsson
Accuracy and Reliability in Scientific Computing
Siam, 2005

Jean-Michel Muller
Elementary Functions, algorithms and implemen-
tation, 2ème édition
Birkhauser, 2006

Brisebarre, de Dinechin, Jeannerod, Lefèvre, Mel-
quiond, Muller (coordinator), Revol, Stehlé and Torres
A Handbook of Floating-Point Arithmetic
Birkhauser, 2010.

J.-M. Muller Exact computations with an arithmetic. . . sept. 2011 55 / 55

	Introduction
	Floating-Point Arithmetic
	Desirable properties
	Famous failures
	Definition
	Correct rounding

	A few elementary algorithms and properties
	Sterbenz Lemma
	Error of FP addition (Møller, Knuth, Dekker)
	Adding n numbers

	ULP: Unit in the Last Place
	Division
	Newton-Raphson iteration to compute 1/b

	Double roundings
	2Sum and double roundings
	2Sum and double roundings
	Rump, Ogita and Oishi's cascaded summation algorithm

	Multiplication by constants

