Exact computations with an arithmetic known to be approximate

MaGiX@LiX conference - 2011 Jean-Michel Muller

CNRS - Laboratoire LIP (CNRS-INRIA-ENS Lyon-Université de Lyon)
http://perso.ens-lyon.fr/jean-michel.muller/

Floating-Point Arithmetic

- bad reputation;
- used everywhere in scientific calculation ;
- "scientific notation" of numbers :

$$
6.02214179 \times 10^{23}
$$

The number 6.02214179 is the significand (or mantissa), and the number 23 is the exponent.

- generalization to radix $\beta: x=m_{x} \cdot \beta^{e_{x}}$, where m_{x} is represented in radix β. Almost always, β is 2 or 10 ;

Floating-Point Arithmetic

- bad reputation;
- used everywhere in scientific calculation ;
- "scientific notation" of numbers :

$$
6.02214179 \times 10^{23}
$$

The number 6.02214179 is the significand (or mantissa), and the number 23 is the exponent.

- generalization to radix $\beta: x=m_{x} \cdot \beta^{e_{x}}$, where m_{x} is represented in radix β. Almost always, β is 2 or 10 ;

But there is more to say about this. . . later

Desirable properties

- Speed : tomorrow's weather must be computed in less than 24 hours;
- Accuracy, Range;
- "Size" : silicon area and/or code size ;
- Power consumption;
- Portability : the programs we write on a given system must run on different systems without requiring huge modifications;
- Easiness of implementation and use: If a given arithmetic is too arcane, nobody will use it.

Some can do a very poor job...

- 1994 : Pentium 1 division bug : 8391667/12582905 gave 0.666869... instead of 0.666910 ...;

Some can do a very poor job...

- 1994 : Pentium 1 division bug : 8391667/12582905 gave 0.666869... instead of $0.666910 \cdots$;

- Maple version 6.0. Enter 214748364810, you get 10. Note that $2147483648=2^{31}$;

Some can do a very poor job...

- 1994 : Pentium 1 division bug : 8391667/12582905 gave $0.666869 \ldots$ instead of $0.666910 \cdots$;

- Maple version 6.0. Enter 214748364810, you get 10. Note that $2147483648=2^{31}$;
- Excel'2007 (first releases), compute $65535-2^{-37}$, you get 100000 ;

Some can do a very poor job...

- 1994 : Pentium 1 division bug : 8391667/12582905 gave $0.666869 \ldots$ instead of $0.666910 \cdots$;

- Maple version 6.0. Enter 214748364810, you get 10. Note that $2147483648=2^{31}$;
- Excel'2007 (first releases), compute $65535-2^{-37}$, you get 100000 ;
- November 1998, USS Yorktown warship, somebody erroneously entered a «zero» on a keyboard \rightarrow division by $0 \rightarrow$ series of errors \rightarrow the propulsion system stopped.

Some strange things

- Setun Computer, Moscow University, 1958. 50 copies;

Some strange things

- Setun Computer, Moscow University, 1958. 50 copies;
- radix 3 and digits $-1,0$ and 1 . Numbers represented using 18《 trits »;

Some strange things

- Setun Computer, Moscow University, 1958. 50 copies;
- radix 3 and digits $-1,0$ and 1 . Numbers represented using 18《 trits »;
- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : $\beta \times n$.

Some strange things

- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : $\beta \times n . \rightarrow$ punched card area;

Some strange things

- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : $\beta \times n . \rightarrow$ punched card area;
- if we wish to represent M numbers, minimize $\beta \times n$ knowing that $\beta^{n} \geq M$.

Some strange things

- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : $\beta \times n . \rightarrow$ punched card area;
- if we wish to represent M numbers, minimize $\beta \times n$ knowing that $\beta^{n} \geq M$.
- With real variables $\beta=e=2.718 \ldots \approx 3 . .$. what is the "best" (integral) radix?

Some strange things

- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : $\beta \times n . \rightarrow$ punched card area;
- if we wish to represent M numbers, minimize $\beta \times n$ knowing that $\beta^{n} \geq M$.
- With real variables $\beta=e=2.718 \ldots \approx 3 \ldots$ what is the "best" (integral) radix?
- as soon as :

$$
M \geq e^{\frac{5}{(2 / \ln (2))-(3 / \ln (3))}} \approx 1.09 \times 10^{14}
$$

it is always 3

Yes, but...

Building circuits with three-valued logic turned out to be very difficult. . .

Yes, but...

Building circuits with three-valued logic turned out to be very difficult. . .
...so that in practice, each "trit" was represented by two bits.

Floating-Point System

Parameters :

$$
\begin{cases}\text { radix (or base) } & \beta \geq 2 \text { (will be } 2 \text { in this presentation) } \\ \text { precision } & p \geq 1 \\ \text { extremal exponents } & e_{\min }, e_{\max },\end{cases}
$$

A finite FP number x is represented by 2 integers :

- integral significand: $M,|M| \leq \beta^{p}-1$;
- exponent $e, e_{\text {min }} \leq e \leq e_{\text {max }}$. such that

$$
x=M \times \beta^{e+1-p}
$$

with $|M|$ largest under these constraints $\left(\rightarrow|M| \geq \beta^{p-1}\right.$, unless $\left.e=e_{\min }\right)$. (Real) significand of x : the number $m=M \times \beta^{1-p}$, so that $x=m \times \beta^{e}$.

Normal and subnormal numbers

- normal number : of absolute value $\geq \beta^{e_{\text {min }}}$. The absolute value of its integral significand is $\geq \beta^{p-1}$;
- subnormal number: of absolute value $<\beta^{e_{\text {min }}}$. The absolute value of its integral significand is $<\beta^{p-1}$.
normality/subnormality encoded in the exponent.

Radix 2 : the leftmost bit of the significand of a normal number is a " 1 " \rightarrow no need to store it (implicit 1 convention).

Subnormal numbers difficult to implement efficiently, but. . .

$a \neq b$ equivalent to "computed $a-b \neq 0$ ".

IEEE-754 Standard for FP Arithmetic (1985 and 2008)

- put an end to a mess (no portability, variable quality);
- leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087) ;
- formats ;
- specification of operations and conversions;
- exception handling (max+1, $1 / 0, \sqrt{-2}, 0 / 0$, etc.) ;
- new version of the standard : August 2008.

Correct rounding

Definition 1 (Correct rounding)

The user chooses a rounding function among :

- round toward $-\infty: \mathrm{RD}(x)$ is the largest FP number $\leq x$;
- round toward $+\infty$: $\mathrm{RU}(x)$ is the smallest FP number $\geq x$;
- round toward zero: $\mathrm{RZ}(x)$ is equal to $\mathrm{RD}(x)$ if $x \geq 0$, and to $\mathrm{RU}(x)$ if $x \leq 0$;
- round to nearest : RN $(x)=$ FP number closest to x. If exactly halfway between two consecutive FP numbers : the one whose integral significand is even (default mode)
Correctly rounded operation : returns what we would get by infinitely precise operation followed by rounding.

Correct rounding

IEEE-754 (1985) : Correct rounding for,,$+- \times, \div, \sqrt{ }$ and some conversions. Advantages :

- if the result of an operation is exactly representable, we get it ;
- if we just use the 4 arith. operations and $\sqrt{ }$, deterministic arithmetic: one can elaborate algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- playing with rounding towards $+\infty$ and $-\infty \rightarrow$ certain lower and upper bounds : interval arithmetic.

FP arithmetic becomes a structure in itself, that can be studied.

First example : Strebenz Lemma

Lemma 2 (Sterbenz)

Radix β, with subnormal numbers available. Let a and b be positive FP numbers. If

$$
\frac{a}{2} \leq b \leq 2 a
$$

then $a-b$ is a FP number (\rightarrow computed exactly, in any rounding mode).
Proof : straightforward using the notation $x=M \times \beta^{e+1-p}$.

Error of FP addition (Møller, Knuth, Dekker)

First result : representability. $\mathrm{RN}(x)$ is x rounded to nearest.
Lemma 3
Let a and b be two FP numbers. Let

$$
s=R N(a+b)
$$

and

$$
r=(a+b)-s
$$

If no overflow when computing s, then r is a FP number.
Same thing for \times.

Error of FP addition (Møller, Knuth, Dekker)

Proof: Assume $|a| \geq|b|$,
(1) s is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a is. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b| .
$$

Error of FP addition (Møller, Knuth, Dekker)

Proof: Assume $|a| \geq|b|$,
(1) s is "the" FP number nearest $a+b \rightarrow$ it is closest to $a+b$ than a is. Hence $|(a+b)-s| \leq|(a+b)-a|$, therefore

$$
|r| \leq|b|
$$

(2) denote $a=M_{a} \times \beta^{e_{a}-p+1}$ and $b=M_{b} \times \beta^{e_{b}-p+1}$, with $\left|M_{a}\right|,\left|M_{b}\right| \leq \beta^{p}-1$, and $e_{a} \geq e_{b}$. $a+b$ is multiple of $\beta^{e_{b}-p+1} \Rightarrow s$ and r are multiple of $\beta^{e_{b}-p+1}$ too $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

$$
r=R \times \beta^{e_{b}-p+1}
$$

but, $|r| \leq|b| \Rightarrow|R| \leq\left|M_{b}\right| \leq \beta^{p}-1 \Rightarrow r$ is a FP number.

Get r : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))
$\beta \leq 3$, subnormal numbers available. Let a and b be FP numbers, s.t.
$|a| \geq|b|$. Following algorithm : s and r such that

- $s+r=a+b$ exactly;
- s is "the" FP number that is closest to $a+b$.

Algorithm 1 (FastTwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& z \leftarrow R N(s-a) \\
& r \leftarrow R N(b-z)
\end{aligned}
$$

C Program 1

$$
\begin{aligned}
& s=a+b ; \\
& z=s-a ; \\
& r=b-z ;
\end{aligned}
$$

Important remark : Proving the behavior of such algorithms requires use of the correct rounding property.

Proof in the case $\beta=2$

$$
\begin{aligned}
& s=\operatorname{RN}(a+b) \\
& z=\operatorname{RN}(s-a) \\
& t=\operatorname{RN}(b-z)
\end{aligned}
$$

- if a and b have same sign, then $|a| \leq|a+b| \leq|2 a|$ hence (radix $2 \rightarrow 2 a$ is a FP number, rounding is increasing) $|a| \leq|s| \leq|2 a| \rightarrow$ (Sterbenz Lemma) $z=s-a$. Since $r=(a+b)-s$ is a FPN and $b-z=r$, we find $\mathrm{RN}(b-z)=r$.
- if a and b have opposite signs then
(1) either $|b| \geq \frac{1}{2}|a|$, which implies (Sterbenz Lemma) $a+b$ is a FPN, thus $s=a+b, z=b$ and $t=0$;
(2) or $|b|<\frac{1}{2}|a|$, which implies $|a+b|>\frac{1}{2}|a|$, hence $s \geq \frac{1}{2}|a|$ (radix $2 \rightarrow \frac{1}{2} a$ is a FPN, and rounding is increasing), thus (Sterbenz Lemma) $z=\operatorname{RN}(s-a)=s-a=b-r$. Since $r=(a+b)-s$ is a FPN and $b-z=r$, we get $\mathrm{RN}(b-z)=r$.

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b.

Knuth: $\forall \beta$, if no underflow nor over-

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

flow occurs then $a+b=s+r$, and s is nearest $a+b$.

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b.

Knuth: $\forall \beta$, if no underflow nor overflow occurs then $a+b=s+r$, and s

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

is nearest $a+b$.

Boldo et al : (formal proof) in radix
2 , underflow does not hinder the result
Boldo et al:(formal proof) in radix
2, underflow does not hinder the result (overflow does).

The TwoSum Algorithm (Møller-Knuth)

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b.

Knuth: $\forall \beta$, if no underflow nor over-

Algorithm 2 (TwoSum)

$$
\begin{aligned}
& s \leftarrow R N(a+b) \\
& a^{\prime} \leftarrow R N(s-b) \\
& b^{\prime} \leftarrow R N\left(s-a^{\prime}\right) \\
& \delta_{a} \leftarrow R N\left(a-a^{\prime}\right) \\
& \delta_{b} \leftarrow R N\left(b-b^{\prime}\right) \\
& r \leftarrow R N\left(\delta_{a}+\delta_{b}\right)
\end{aligned}
$$

flow occurs then $a+b=s+r$, and s is nearest $a+b$.

Boldo et al : (formal proof) in radix 2, underflow does not hinder the result (overflow does).

TwoSum is optimal, in a way we are going to explain.

TwoSum is optimal

Assume an algorithm satisfies:

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions : at step i we compute RN $(u+v)$ or RN $(u-v)$ where u and v are input variables or previously computed variables.
If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).
- proof : most inelegant proof award ;

TwoSum is optimal

Assume an algorithm satisfies:

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions : at step i we compute RN $(u+v)$ or RN $(u-v)$ where u and v are input variables or previously computed variables.
If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).
- proof : most inelegant proof award;
- 480756 algorithms with 5 operations (after suppressing the most obvious symmetries) ;

TwoSum is optimal

Assume an algorithm satisfies:

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions : at step i we compute RN $(u+v)$ or RN $(u-v)$ where u and v are input variables or previously computed variables.
If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).
- proof : most inelegant proof award;
- 480756 algorithms with 5 operations (after suppressing the most obvious symmetries);
- each of them tried with 2 well-chosen pairs of input values.

Adding n numbers : $x_{1}+x_{2}+x_{3}+\cdots+x_{n}$

Pichat, Ogita, Rump, and Oishi's algorithm RN : rounding to nearest
Algorithm 3
$S \longleftarrow X_{1}$
$e \leftarrow 0$
for $i=2$ to n do
$\left(s, e_{i}\right) \leftarrow 2 \operatorname{Sum}\left(s, x_{i}\right)$
$e \leftarrow R N\left(e+e_{i}\right)$
end for
return $R N(s+e)$

Adding n numbers : $x_{1}+x_{2}+x_{3}+\cdots+x_{n}$

Theorem 5 (Ogita, Rump and Oishi)

Let

$$
\mathbf{u}=\frac{1}{2} \beta^{-p+1}
$$

and

$$
\gamma_{n}=\frac{n \mathbf{u}}{1-n \mathbf{u}} .
$$

Applying the algorithm of $P ., O ., R$. , and O. to $x_{i}, 1 \leq i \leq n$, and if $n \mathbf{u}<1$, then, even in case of underflow (but without overflow), the final result σ satisfies

$$
\left|\sigma-\sum_{i=1}^{n} x_{i}\right| \leq \mathbf{u}\left|\sum_{i=1}^{n} x_{i}\right|+\gamma_{n-1}^{2} \sum_{i=1}^{n}\left|x_{i}\right| .
$$

ULP: Unit in the Last Place

Radix β, precision p. In the following, $x \in \mathbb{R}$ and X is a FP number that approximates x.

Definition 6

If $|x| \in\left[\beta^{e}, \beta^{e+1}\right)$ then $\operatorname{ulp}(x)=\beta^{\max \left(e, e_{\text {min }}\right)-p+1}$.

Property 1

In radix 2,

$$
|X-x|<\frac{1}{2} u l p(x) \Rightarrow X=R N(x)
$$

Not true in radix ≥ 3. Not true (even in radix 2) if we replace ulp (x) by ulp (X).

ULP: Unit in the Last Place

Property 2
In any radix,

$$
X=R N(x) \Rightarrow|X-x| \leq \frac{1}{2} u l p(x)
$$

Property 3
In any radix,

$$
X=R N(x) \Rightarrow|X-x| \leq \frac{1}{2} u l p(X)
$$

Division using Newton-Raphson iteration and an FMA

 Simplified version of an algorithm used on the Intel/HP Itanium. Precision p, radix 2. To simplify, assume we compute $1 / b$. We assume $1 \leq b<2$ (significands of normal FP numbers).- Newton-Raphson iteration to compute $1 / b$:

$$
y_{n+1}=y_{n}\left(2-b y_{n}\right)
$$

- we lookup $y_{0} \approx 1 / b$ in a table addressed by the first (typically from 6 to 10) bits of b;
- FMA : computes RN $(x y+z)$ (RS 6000, Power PC, Itanium...) ;
- the NR iteration is decomposed into 2 FMA instructions :

$$
\begin{cases}e_{n} & =\operatorname{RN}\left(1-b y_{n}\right) \\ y_{n+1} & =\operatorname{RN}\left(y_{n}+e_{n} y_{n}\right)\end{cases}
$$

Notice that $e_{n+1} \approx e_{n}^{2}$.

Property 4

If

$$
\left|\frac{1}{b}-y_{n}\right|<\alpha 2^{-k},
$$

where $1 / 2<\alpha \leq 1$ and $k \geq 1$, then

$$
\begin{aligned}
\left|\frac{1}{b}-y_{n+1}\right| & <b\left(\frac{1}{b}-y_{n}\right)^{2}+2^{-k-p}+2^{-p-1} \\
& <2^{-2 k+1} \alpha^{2}+2^{-k-p}+2^{-p-1}
\end{aligned}
$$

\Rightarrow it seems that we can get arbitrarily closer to error 2^{-p-1} (i.e., $1 / 2$ ulp $(1 / b))$, without being able to show a bound below $1 / 2$ ulp $(1 / b)$.

Example : double precision of the IEEE-754 standard Assume $p=53$ and $\left|y_{0}-\frac{1}{b}\right|<2^{-8}$ (small table), we find

- $\left|y_{1}-1 / b\right|<0.501 \times 2^{-14}$
- $\left|y_{2}-1 / b\right|<0.51 \times 2^{-28}$
- $\left|y_{3}-1 / b\right|<0.57 \times 2^{-53}=0.57$ ulp $(1 / b)$

Going further?

Property 5

When y_{n} approximates $1 / b$ within error $<1 u l p(1 / b)=2^{-p}$, then, since b is multiple of 2^{-p+1} and y_{n} is multiple of $2^{-p}, 1-b y_{n}$ is multiple of $2^{-2 p+1}$.
But $\left|1-b y_{n}\right|<2^{-p+1} \rightarrow 1-b y_{n}$ is exactly representable in FP arithmetic with a p-bit precision \rightarrow exactly computed by one FMA.

$$
\Rightarrow\left|\frac{1}{b}-y_{n+1}\right|<b\left(\frac{1}{b}-y_{n}\right)^{2}+2^{-p-1}
$$

$$
\left|y_{n}-\frac{1}{b}\right|<\alpha 2^{-p} \Rightarrow\left|y_{n+1}-\frac{1}{b}\right|<b \alpha^{2} 2^{-2 p}+2^{-p-1}
$$

(assuming $\alpha<1$)
$1 / b$ can be here

$1 \mathrm{ulp}=2^{-p}$

What can be deduced?

- to be at distance $>1 / 2$ ulp from $y_{n+1}, 1 / b$ must be within $b \alpha^{2} 2^{-2 p}<b 2^{-2 p}$ from the midpoint of two consecutive FP numbers;
- implies that distance between y_{n} and $1 / b$ has the form $2^{-p-1}+\epsilon$, with $|\epsilon|<b 2^{-2 p}$;
- implies $\alpha<\frac{1}{2}+b 2^{-p}$ hence

$$
\left|y_{n+1}-\frac{1}{b}\right|<\left(\frac{1}{2}+b 2^{-p}\right)^{2} b 2^{-2 p}+2^{-p-1}
$$

- so, to be at distance $>1 / 2$ ulp from $y_{n+1}, 1 / b$ must be within $\left(\frac{1}{2}+b 2^{-p}\right)^{2} b 2^{-2 p}$ from the midpoint of two consecutive FP numbers.
- b is a FP number between 1 et $2 \Rightarrow b=B / 2^{p-1}$ where $B \in \mathbb{N}$, $2^{p-1}<B \leq 2^{p}-1$;
- the midpoint of two consecutive FP numbers in the neighborhood of $1 / b$ has the form $g=(2 G+1) / 2^{p+1}$ where $G \in \mathbb{N}$, $2^{p-1} \leq G<2^{p}-1$;
- we deduce

$$
\left|g-\frac{1}{b}\right|=\left|\frac{2 B G+B-2^{2 p}}{B .2^{p+1}}\right|
$$

- the distance between $1 / b$ and the midpoint of two consecutive FP numbers is a multiple of $1 /\left(B \cdot 2^{p+1}\right)=2^{-2 p} / b$. It is $\neq 0$

Distance between $\frac{1}{b}$ and g, when $\left|\frac{1}{b}-y_{n+1}\right|>\frac{1}{2}$ ulp $\left(\frac{1}{b}\right)$

- has the form $k 2^{-2 p} / b, k \in \mathbb{Z}, k \neq 0$;
- we must have

$$
\frac{|k| \cdot 2^{-2 p}}{b}<\left(\frac{1}{2}+b 2^{-p}\right)^{2} b 2^{-2 p}
$$

therefore

$$
|k|<\left(\frac{1}{2}+b 2^{-p}\right)^{2} b^{2}
$$

- since $b<2$, as soon as $p \geq 4$, the only solution is $|k|=1$;
- moreover, for $|k|=1$, elementary manipulation shows that the only possible solution is

$$
b=2-2^{-p+1}
$$

How do we procede?

- we want

$$
\begin{gathered}
B=2^{p}-1, \\
2^{p-1} \leq G \leq 2^{p}-1 \\
B(2 G+1)=2^{2 p} \pm 1
\end{gathered}
$$

Only one solution: $B=2^{p}-1$ and $G=2^{p-1}$: comes from $2^{2 p}-1=\left(2^{p}-1\right)\left(2^{p}+1\right)$;

- except for that B (thus for the corresponding value $b=B / 2^{p-1}$ of b), we are certain that $y_{n+1}=\operatorname{RN}(1 / b)$;
- for $B=2^{p}-1$: we try the algorithm with the two values of y_{n} within one ulp from $1 / b$ (i.e. $1 / 2$ and $1 / 2+2^{-p}$). In practice, it works (otherwise : do dirty things).

Application : double precision $(p=53)$

We start from y_{0} such that $\left|y_{0}-\frac{1}{b}\right|<2^{-8}$. We compute :

$$
\begin{aligned}
& e_{0}=\mathrm{RN}\left(1-b y_{0}\right) \\
& y_{1}=\mathrm{RN}\left(y_{0}+e_{0} y_{0}\right) \\
& e_{1}=\mathrm{RN}\left(1-b y_{1}\right) \\
& y_{2}=\mathrm{RN}\left(y_{1}+e_{1} y_{1}\right) \\
& e_{2}=\operatorname{RN}\left(1-b y_{1}\right) \\
& y_{3}=\operatorname{RN}\left(y_{2}+e_{2} y_{2}\right) \quad \text { error } \leq 0.57 \text { ulps } \\
& e_{3}=\operatorname{RN}\left(1-b y_{2}\right) \\
& y_{4}=\operatorname{RN}\left(y_{3}+e_{3} y_{3}\right) \quad 1 / b \text { rounded to nearest }
\end{aligned}
$$

In practice : two iterations

Markstein iterations
Goldschmidt iterations
$\begin{cases}e_{n} & =\mathrm{RN}\left(1-b y_{n}\right) \\ y_{n+1} & =\operatorname{RN}\left(y_{n}+e_{n} y_{n}\right)\end{cases}$
$\left\{\begin{array}{l}e_{n+1}=\mathrm{RN}\left(e_{n}^{2}\right) \\ y_{n+1}=\operatorname{RN}\left(y_{n}+e_{n} y_{n}\right)\end{array}\right.$
More accurate ("self correcting"), sequential

Less accurate, faster (parallel)

In practice : we start with Goldschmidt iterations, and switch to Markstein iterations for the final steps.

Double roundings

C program :
double a = 1848874847.0;
double b = 19954562207.0;
double c;
$c=a * b ;$
printf("c = \%20.19e\n", c);
return 0;

Depending on the environment, we obtain $3.6893488147419103232 \mathrm{e}+19$ or $3.6893488147419111424 \mathrm{e}+19$ (which is the binary64 number closest to the exact product).

Double roundings

- several FP formats supported in a given environment \rightarrow difficult to know in which format some operations are performed;
- may make the result of a sequence of operations difficult to predict;
- for instance, the C99 Std states :
the values of operations with floating operands and values subject to the usual arithmetic conversions and of floating constants are evaluated to a format whose range and precision may be greater than required by the type.

Double roundings

Assume the various declared variables of a program are of the same format. Two phenomenons may occur when a wider format is available :

- for implicit variables such as the result of " $a+b$ " in " $d=(a+b) * c$ ") : not clear in which format they are computed;
- explicit variables may be first computed in the wider format, and then rounded to their destination format \rightarrow sometimes leads to a problem called double rounding.

What happened in the example?

The exact value of $\mathrm{a} * \mathrm{~b}$ is 36893488147419107329 . In binary :

64 bits

If it is first rounded to the INTEL "double-extended" format, we get

64 bits
$\underbrace{100} 10000000000 \times 4$
53 bits
if that intermediate value is rounded to the binary64 destination format, this gives (round-to-nearest-even rounding mode)

$$
\begin{aligned}
& \underbrace{1000}_{53 \text { bits }} \times 2^{13} \\
& =36893488147419103232_{10},
\end{aligned}
$$

\rightarrow rounded down, whereas it should have been rounded up.

Is it a problem?

- In most applications, these phenomenons are innocuous;
- they make the behavior of some numerical programs difficult to predict (interesting examples given by Monniaux) ;
- most compilers offer options that prevent this problem. However,
- restricts the portability of numerical programs : e.g., difficult to make sure that one will always use 2 Sum with the right compilation switches;
- may have a bad impact on the accuracy of programs, since it is in general more accurate to perform the intermediate calculations in a wider format.
\rightarrow examine which properties remain true when double roundings occur.

Notation

- precision- p target format, and precision- $\left(p+p^{\prime}\right)$ wider "internal" format ;
- when the precision is omitted, it is p (e.g. "FPN" means "precision- p FPN') ;
- $\mathrm{RN}_{k}(u)$ means u rounded to the nearest precision- k FP number (assuming round to nearest even);

Double rounding \rightarrow the error of $a+b$ may not be a FPN Consider $a=1 \underbrace{x x x x \cdots x} 01$, where $x x x x \cdots x$ is any $(p-3)$-bit bit-chain. Also consider, $b=0.0 \underbrace{11111 \cdots 1}_{p \text { ones }}=\frac{1}{2}-2^{-p-1}$. We have :

$$
a+b=\underbrace{1 x x x x \ldots x 01}_{p \text { bits }} \cdot 0 \underbrace{111111 \ldots 1}_{p \text { bits }}
$$

so that if $1 \leq p^{\prime} \leq p, u=R N_{p+p^{\prime}}(a+b)=1 x x x x \ldots x 01.100 \ldots 0$, we have

$$
s=R N_{p}(u)=1 x x x x \ldots x 10=a+1
$$

Therefore,

$$
s-(a+b)=a+1-\left(a+\frac{1}{2}-2^{-p-1}\right)=\frac{1}{2}+2^{-p-1}=0 . \underbrace{10000 \cdots 01}_{p+1 \mathrm{bits}}
$$

which is not exactly representable in precision-p FP arithmetic.

Double roundings and double rounding biases

When the arithmetic operation $x \top y$ appears in a program :

- a double rounding occurs if what is actually performed is

$$
\mathrm{RN}_{p}\left(\operatorname{RN}_{p+p^{\prime}}(x \top y)\right),
$$

- a double rounding bias occurs if a double rounding occurs and the obtained result differs from $\mathrm{RN}_{p}(x \top y)$.

2Sum and double roundings

Algorithm 4 (2Sum-with-double-roundings(a, b))
(1) $s \leftarrow R N_{p}\left(R N_{p+p^{\prime}}(a+b)\right)$ or $R N_{p}(a+b)$
(2) $a^{\prime} \leftarrow R N_{p}\left(R N_{p+p^{\prime}}(s-b)\right)$ or $\left.R N_{p}(s-b)\right)$
(3) $b^{\prime} \leftarrow \circ\left(s-a^{\prime}\right)$
(4) $\delta_{a} \leftarrow R N_{p}\left(R N_{p+p^{\prime}}\left(a-a^{\prime}\right)\right)$ or $R N_{p}\left(a-a^{\prime}\right)$
(5) $\delta_{b} \leftarrow R N_{p}\left(R N_{p+p^{\prime}}\left(b-b^{\prime}\right)\right)$ or $R N_{p}\left(b-b^{\prime}\right)$
(6) $t \leftarrow R N_{p}\left(R N_{p+p^{\prime}}\left(\delta_{a}+\delta_{b}\right)\right)$ or $R N_{p}\left(\delta_{a}+\delta_{b}\right)$
$\circ(u): \mathrm{RN}_{p}(u), \mathrm{RN}_{p+p^{\prime}}(u)$, or $\mathrm{RN}_{p}\left(\mathrm{RN}_{p+p^{\prime}}(u)\right)$, or any faithful rounding.

Theorem 7

If $p \geq 4$ and $p+p^{\prime}$, with $p^{\prime} \geq 2$. If a and b are precision-p FPN, and if no overflow occurs, then Algorithm 4 satisfies :

- if no double rounding bias occurred when computing s then $t=(a+b-s)$ exactly;
- otherwise, $t=R N_{p}(a+b-s)$.

Rump, Ogita and Oishi's cascaded summation algorithm

Algorithm 5

$$
\begin{aligned}
& s \leftarrow a_{1} \\
& e \leftarrow 0 \\
& \text { for } i=2 \text { to } n \text { do } \\
& \quad\left(s, e_{i}\right) \leftarrow 2 \text { Sum-with-double-roundings }\left(s, a_{i}\right) \\
& \quad e \leftarrow R N_{p}\left(R N_{p+p^{\prime}}\left(e+e_{i}\right)\right) \\
& \text { end for } \\
& \text { return } R N_{p}\left(R N_{p+p^{\prime}}(s+e)\right)
\end{aligned}
$$

Pichat, Rump, Ogita and Oishi's summation algorithm

Theorem 8

Assuming $p \geq 8, p^{\prime} \geq 4$, and $n<\frac{1}{2 u^{\prime}}$, the final value σ returned by Algorithm 5 satisfies

$$
\begin{aligned}
\left|\sigma-\sum_{i=1}^{n} a_{i}\right| & \leq\left(2^{-p}+2^{-p-p^{\prime}}+2^{-2 p-p^{\prime}}\right) \cdot \sum_{i=1}^{n} a_{i} \\
& +2^{-2 p} \cdot\left(4 n^{2}-10 n-5\right) \cdot\left(1+2^{-p^{\prime}+1}+\frac{3}{200}\right) \cdot \sum_{i=1}^{n}\left|a_{i}\right| \cdot
\end{aligned}
$$

Rump, Ogita and Oishi's K-fold summation algorithm

Algorithm $6\left(\operatorname{VecSum}(a)\right.$, where $\left.a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)$

```
\(p \leftarrow a\)
for \(i=2\) to \(n\) do
        \(\left(p_{i}, p_{i-1}\right) \leftarrow 2 S u m\left(p_{i}, p_{i-1}\right)\)
end for
return \(p\)
```

Algorithm 7 (K-fold summation algorithm)

$$
\begin{gathered}
\text { for } k=1 \text { to } K-1 \text { do } \\
a \leftarrow \operatorname{VecSum}(a)
\end{gathered}
$$

end for

$$
c=a_{1}
$$

$$
\text { for } i=2 \text { to } n-1 \text { do }
$$

$$
c \leftarrow R N\left(c+a_{i}\right)
$$

end for
return $R N\left(a_{n}+c\right)$

Rump, Ogita and Oishi's K-fold summation algorithm

- without double roundings, if $4 n u<1$, the FPN σ returned by Algorithm 7 satisfies

$$
\begin{equation*}
\left|\sigma-\sum_{i=1}^{n} a_{i}\right| \leq\left(u+\gamma_{n-1}^{2}\right)\left|\sum_{i=1}^{n} a_{i}\right|+\gamma_{2 n-2}^{K} \sum_{i=1}^{n}\left|a_{i}\right| . \tag{1}
\end{equation*}
$$

- if a double-rounding bias occurs in the first call to VecSum, not possible to show an error bound better than prop. to $2^{-2 p} \sum_{i=1}^{n}\left|a_{i}\right|$;

Multiplication by "infinitely precise" constants

- We want $\mathrm{RN}(C x)$, where x is a FP number, and C a real constant (i.e., known at compile-time).
- Typical values of $C: \pi, 1 / \pi, \ln (2), \ln (10), e, 1 / k!, B_{k} / k!, 1 / 10^{k}$, $\cos (k \pi / N)$ and $\sin (k \pi / N), \ldots$
- another frequent case : $C=\frac{1}{\text { FP number }}$ (division by a constant);

The algorithm

- introduced by Brisebarre and M.,
- Cx with correct rounding (assuming rounding to nearest even);
- C is not a FP number;
- A correctly rounded fma instruction is available. Operands stored in a binary FP format of precision p;
- We assume that the two following FP numbers are pre-computed:

$$
\left\{\begin{array}{l}
C_{h}=\operatorname{RN}(C), \\
C_{\ell}=\operatorname{RN}\left(C-C_{h}\right),
\end{array}\right.
$$

The algorithm

Algorithm 8 (Multiplication by C with a product and an fma)
From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right) .
\end{array}\right.
$$

Returned result : u_{2}.

The algorithm

Algorithm 8 (Multiplication by C with a product and an fma)
From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right)
\end{array}\right.
$$

Returned result : u_{2}.
Warning! There exist C and x s.t. $u_{2} \neq \mathrm{RN}(C x)$ - easy to build.

The algorithm

Algorithm 8 (Multiplication by C with a product and an fma)
From x, compute

$$
\left\{\begin{array}{l}
u_{1}=R N\left(C_{\ell} x\right) \\
u_{2}=R N\left(C_{h} x+u_{1}\right)
\end{array}\right.
$$

Returned result : u_{2}.
Warning! There exist C and x s.t. $u_{2} \neq \mathrm{RN}(C x)$ - easy to build.
Fast methods for analyzing a given C

Examples

Theorem 9 (Correctly rounded multiplication by π)

The algorithm always returns a correctly rounded result in double precision with $C=2^{j} \pi$, where j is any integer, provided no under/overflow occur.

- Same thing with $C=\ln (2)$;
- with $C=1 / \pi$, the only numbers x for which the algorithm does not work in double precision are of the form

$$
6081371451248382 \times 2^{ \pm k}
$$

Conclusion

- operations fully specified (the double rounding problem should partly vanish when IEEE 754-2008 becomes widely implemented);
- derive algorithms, as well as proofs of properties;
- formal proof investigated by several people;

Floating-point arithmetic on the web

- W. Kahan : http://http.cs.berkeley.edu/~wkahan/
- Goldberg's paper "What every computer scientist should know about Floating-Point arithmetic" http://www.validlab.com/goldberg/paper.pdf
- D. Hough :
http://www.validlab.com/754R/
- The Arenaire team of lab. LIP (ENS Lyon) http://www.ens-lyon.fr/LIP/Arenaire/
- my own web page http://perso.ens-lyon.fr/jean-michel.muller/

Books on Floating-Point Arithmetic

Michael Overton
Numerical Computing with IEEE Floating Point Arithmetic
Siam, 2001

Bo Einarsson
Accuracy and Reliability in Scientific Computing Siam, 2005

Jean-Michel Muller Elementary Functions, algorithms and implementation, 2ème édition
Birkhauser, 2006

Brisebarre, de Dinechin, Jeannerod, Lefèvre, Melquiond, Muller (coordinator), Revol, Stehlé and Torres
A Handbook of Floating-Point Arithmetic
Birkhauser, 2010.

