Exact computations with an arithmetic known to be approximate

MaGiX@LiX conference - 2011

Jean-Michel Muller

CNRS - Laboratoire LIP (CNRS-INRIA-ENS Lyon-Université de Lyon)

http://perso.ens-lyon.fr/jean-michel.muller/

(日) (周) (日) (日)

Floating-Point Arithmetic

- bad reputation;
- used everywhere in scientific calculation;
- "scientific notation" of numbers :

 $6.02214179 imes 10^{23}$

The number 6.02214179 is the significand (or *mantissa*), and the number 23 is the exponent.

• generalization to radix $\beta : x = m_x \cdot \beta^{e_x}$, where m_x is represented in radix β . Almost always, β is 2 or 10;

Floating-Point Arithmetic

- bad reputation;
- used everywhere in scientific calculation;
- "scientific notation" of numbers :

 $6.02214179 imes 10^{23}$

The number 6.02214179 is the significand (or *mantissa*), and the number 23 is the exponent.

• generalization to radix $\beta : x = m_x \cdot \beta^{e_x}$, where m_x is represented in radix β . Almost always, β is 2 or 10;

But there is more to say about this...later

Desirable properties

- Speed : tomorrow's weather must be computed in less than 24 hours;
- Accuracy, Range;
- "Size" : silicon area and/or code size;
- Power consumption ;
- Portability : the programs we write on a given system must run on different systems without requiring huge modifications;
- Easiness of implementation and use : If a given arithmetic is too arcane, nobody will use it.

• 1994 : Pentium 1 division bug : 8391667/12582905 gave 0.666869 · · · instead of 0.666910 · · · ;

• 1994 : Pentium 1 division bug : 8391667/12582905 gave 0.666869 · · · instead of 0.666910 · · · ;

• Maple version 6.0. Enter 214748364810, you get 10. Note that $2147483648 = 2^{31}$;

• 1994 : Pentium 1 division bug : 8391667/12582905 gave 0.666869 · · · instead of 0.666910 · · · ;

- Maple version 6.0. Enter 214748364810, you get 10. Note that $2147483648 = 2^{31}$;
- Excel'2007 (first releases), compute $65535 2^{-37}$, you get 100000;

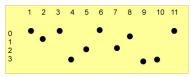
• 1994 : Pentium 1 division bug : 8391667/12582905 gave 0.666869 · · · instead of 0.666910 · · · ;

- Maple version 6.0. Enter 214748364810, you get 10. Note that $2147483648 = 2^{31}$;
- Excel'2007 (first releases), compute $65535 2^{-37}$, you get 100000;
- November 1998, USS Yorktown warship, somebody erroneously entered a «zero» on a keyboard → division by 0 → series of errors → the propulsion system stopped.

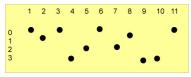
• Setun Computer, Moscow University, 1958. 50 copies;

- Setun Computer, Moscow University, 1958. 50 copies;
- radix 3 and digits -1, 0 and 1. Numbers represented using 18
 « trits »;

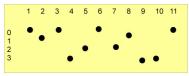
- Setun Computer, Moscow University, 1958. 50 copies;
- radix 3 and digits -1, 0 and 1. Numbers represented using 18
 « trits »;
- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : β × n.



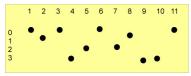
• idea : radix β , *n* digits, you want to represent around *M* different numbers. "Cost" : $\beta \times n$. \rightarrow punched card area;



- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : β × n. → punched card area;
- if we wish to represent *M* numbers, minimize $\beta \times n$ knowing that $\beta^n \ge M$.



- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : β × n. → punched card area;
- if we wish to represent *M* numbers, minimize $\beta \times n$ knowing that $\beta^n \ge M$.
- With real variables $\beta = e = 2.718... \approx 3...$ what is the "best" (integral) radix?



- idea : radix β, n digits, you want to represent around M different numbers. "Cost" : β × n. → punched card area;
- if we wish to represent *M* numbers, minimize $\beta \times n$ knowing that $\beta^n \ge M$.
- With real variables $\beta = e = 2.718... \approx 3...$ what is the "best" (integral) radix?

• as soon as :

$$M \ge e^{rac{5}{(2/\ln(2))-(3/\ln(3))}} \approx 1.09 imes 10^{14}$$

it is always 3

Yes, but...

Building circuits with three-valued logic turned out to be very difficult...

Yes, but...

Building circuits with three-valued logic turned out to be very difficult...

... so that in practice, each "trit" was represented by two bits.

Floating-Point System

Parameters :

 $\left\{ \begin{array}{ll} \mbox{radix (or base)} & \beta \geq 2 \mbox{ (will be 2 in this presentation)} \\ \mbox{precision} & p \geq 1 \\ \mbox{extremal exponents} & e_{\min}, e_{\max}, \end{array} \right.$

A finite FP number x is represented by 2 integers :

• integral significand : M, $|M| \leq \beta^p - 1$;

• exponent
$$e$$
, $e_{\min} \leq e \leq e_{\max}$.

such that

$$x = M \times \beta^{e+1-p}$$

with |M| largest under these constraints ($\rightarrow |M| \ge \beta^{p-1}$, unless $e = e_{\min}$). (Real) significand of x: the number $m = M \times \beta^{1-p}$, so that $x = m \times \beta^{e}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

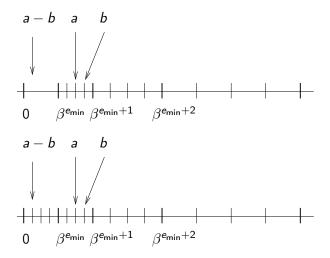
Normal and subnormal numbers

- normal number : of absolute value $\geq \beta^{e_{\min}}$. The absolute value of its integral significand is $\geq \beta^{p-1}$;
- subnormal number : of absolute value $< \beta^{e_{\min}}$. The absolute value of its integral significand is $< \beta^{p-1}$.

normality/subnormality encoded in the exponent.

Radix 2 : the leftmost bit of the significand of a normal number is a "1" \rightarrow no need to store it (implicit 1 convention).

Subnormal numbers difficult to implement efficiently, but...



 $a \neq b$ equivalent to "computed $a - b \neq 0$ ".

J.-M. Muller

IEEE-754 Standard for FP Arithmetic (1985 and 2008)

- put an end to a mess (no portability, variable quality);
- leader : W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats ;
- specification of operations and conversions;
- exception handling (max+1, 1/0, $\sqrt{-2}$, 0/0, etc.);
- new version of the standard : August 2008.

Correct rounding

Correct rounding

Definition 1 (Correct rounding)

The user chooses a *rounding function* among :

- round toward $-\infty$: RD(x) is the largest FP number $\leq x$;
- round toward $+\infty$: RU (x) is the smallest FP number $\geq x$;
- round toward zero : RZ (x) is equal to RD (x) if $x \ge 0$, and to RU (x) if $x \le 0$;
- round to nearest : RN (x) = FP number closest to x. If exactly halfway between two consecutive FP numbers : the one whose integral significand is even (default mode)

Correctly rounded operation : returns what we would get by infinitely precise operation followed by rounding.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Correct rounding

Correct rounding

IEEE-754 (1985) : Correct rounding for +, -, \times , \div , \checkmark and some conversions. Advantages :

- if the result of an operation is exactly representable, we get it;
- if we just use the 4 arith. operations and $\sqrt{}$, deterministic arithmetic : one can elaborate algorithms and proofs that use the specifications;
- accuracy and portability are improved;
- playing with rounding towards $+\infty$ and $-\infty \rightarrow$ certain lower and upper bounds : interval arithmetic.

FP arithmetic becomes a structure in itself, that can be studied.

First example : Strebenz Lemma

Lemma 2 (Sterbenz)

Radix β , with subnormal numbers available. Let a and b be positive FP numbers. If

$$\frac{a}{2} \leq b \leq 2a$$

then a - b is a FP number (\rightarrow computed exactly, in any rounding mode).

Proof : straightforward using the notation $x = M \times \beta^{e+1-p}$.

Error of FP addition (Møller, Knuth, Dekker)

First result : representability. RN(x) is x rounded to nearest.

Lemma 3

Let a and b be two FP numbers. Let

$$s = RN(a+b)$$

and

$$r=(a+b)-s.$$

If no overflow when computing s, then r is a FP number.

Same thing for \times .

Error of FP addition (Møller, Knuth, Dekker)

Proof : Assume $|a| \ge |b|$,

● *s* is "the" FP number nearest $a + b \rightarrow$ it is closest to a + b than *a* is. Hence $|(a + b) - s| \le |(a + b) - a|$, therefore

 $|r| \leq |b|.$

Error of FP addition (Møller, Knuth, Dekker)

Proof : Assume $|a| \ge |b|$,

● *s* is "the" FP number nearest $a + b \rightarrow$ it is closest to a + b than *a* is. Hence $|(a + b) - s| \le |(a + b) - a|$, therefore

 $|r|\leq |b|.$

e denote $a = M_a \times \beta^{e_a - p + 1}$ and $b = M_b \times \beta^{e_b - p + 1}$, with $|M_a|, |M_b| \le \beta^p - 1$, and $e_a \ge e_b$. a + b is multiple of $\beta^{e_b - p + 1} \Rightarrow s$ and r are multiple of $\beta^{e_b - p + 1}$ too $\Rightarrow \exists R \in \mathbb{Z}$ s.t.

$$r = R imes \beta^{e_b - p + 1}$$

but, $|r| \le |b| \Rightarrow |R| \le |M_b| \le \beta^p - 1 \Rightarrow r$ is a FP number.

Get *r* : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker)) $\beta < 3$, subnormal numbers available. Let a and b be FP numbers, s.t. |a| > |b|. Following algorithm : s and r such that • s + r = a + b exactly; • s is "the" FP number that is closest to a + b. Algorithm 1 (FastTwoSum) C Program 1 $s \leftarrow RN(a+b)$ s = a+b; $z \leftarrow RN(s-a)$ z = s-a; $r \leftarrow RN(b-z)$ r = b-z;

Important remark : Proving the behavior of such algorithms requires use of the correct rounding property.

イロト 不得下 イヨト イヨト ニヨー

Proof in the case $\beta = 2$

$$s = RN (a + b)$$

$$z = RN (s - a)$$

$$t = RN (b - z)$$

• if a and b have same sign, then $|a| \le |a + b| \le |2a|$ hence (radix $2 \rightarrow 2a$ is a FP number, rounding is increasing) $|a| \le |s| \le |2a| \rightarrow$ (Sterbenz Lemma) z = s - a. Since r = (a + b) - s is a FPN and b - z = r, we find RN (b - z) = r.

• if a and b have opposite signs then

- either $|b| \ge \frac{1}{2}|a|$, which implies (Sterbenz Lemma) a + b is a FPN, thus s = a + b, z = b and t = 0;
- **2** or $|b| < \frac{1}{2}|a|$, which implies $|a + b| > \frac{1}{2}|a|$, hence $s \ge \frac{1}{2}|a|$ (radix $2 \rightarrow \frac{1}{2}a$ is a FPN, and rounding is increasing), thus (Sterbenz Lemma) z = RN(s a) = s a = b r. Since r = (a + b) s is a FPN and b z = r, we get RN(b z) = r.

イロト イポト イヨト イヨト

• no need to compare *a* and *b*;

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

```
Algorithm 2 (TwoSum)

s \leftarrow RN(a+b)

a' \leftarrow RN(s-b)

b' \leftarrow RN(s-a')

\delta_a \leftarrow RN(a-a')

\delta_b \leftarrow RN(b-b')

r \leftarrow RN(\delta_a + \delta_b)
```

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

```
Algorithm 2 (TwoSum)

s \leftarrow RN(a + b)

a' \leftarrow RN(s - b)

b' \leftarrow RN(s - a')

\delta_a \leftarrow RN(a - a')

\delta_b \leftarrow RN(b - b')

r \leftarrow RN(\delta_a + \delta_b)
```

Knuth : $\forall \beta$, if no underflow nor overflow occurs then a + b = s + r, and s is nearest a + b.

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

```
Algorithm 2 (TwoSum)

s \leftarrow RN(a + b)

a' \leftarrow RN(s - b)

b' \leftarrow RN(s - a')

\delta_a \leftarrow RN(a - a')

\delta_b \leftarrow RN(b - b')

r \leftarrow RN(\delta_a + \delta_b)
```

Knuth : $\forall \beta$, if no underflow nor overflow occurs then a + b = s + r, and s is nearest a + b.

Boldo et al : (formal proof) in radix 2, underflow does not hinder the result (overflow does).

A B M A B M

19 / 55

- no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing *a* and *b*.

```
Algorithm 2 (TwoSum)

s \leftarrow RN(a + b)

a' \leftarrow RN(s - b)

b' \leftarrow RN(s - a')

\delta_a \leftarrow RN(a - a')

\delta_b \leftarrow RN(b - b')

r \leftarrow RN(\delta_a + \delta_b)
```

Knuth : $\forall \beta$, if no underflow nor overflow occurs then a + b = s + r, and s is nearest a + b.

Boldo et al : (formal proof) in radix 2, underflow does not hinder the result (overflow does).

TwoSum is optimal, in a way we are going to explain.

sept. 2011

・ 伺 ト ・ ヨ ト ・ ヨ ト

19 / 55

TwoSum is optimal

Assume an algorithm satisfies :

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions : at step i we compute RN(u + v) or RN(u v) where u and v are input variables or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

• proof : most inelegant proof award ;

TwoSum is optimal

Assume an algorithm satisfies :

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions : at step i we compute RN(u + v) or RN(u v) where u and v are input variables or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

- proof : most inelegant proof award ;
- 480756 algorithms with 5 operations (after suppressing the most obvious symmetries);

TwoSum is optimal

Assume an algorithm satisfies :

- it is without tests or min/max instructions;
- it only uses rounded to nearest additions/subtractions : at step i we compute RN (u + v) or RN (u v) where u and v are input variables or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum, then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

- proof : most inelegant proof award ;
- 480756 algorithms with 5 operations (after suppressing the most obvious symmetries);
- each of them tried with 2 well-chosen pairs of input values.

Adding *n* numbers : $x_1 + x_2 + x_3 + \cdots + x_n$

Pichat, Ogita, Rump, and Oishi's algorithm RN : rounding to nearest

Algorithm 3 $s \leftarrow x_1$ $e \leftarrow 0$ for i = 2 to n do $(s, e_i) \leftarrow 2Sum(s, x_i)$ $e \leftarrow RN(e + e_i)$ end for return RN(s + e) Adding *n* numbers : $x_1 + x_2 + x_3 + \cdots + x_n$

$$\mathsf{u} = \frac{1}{2}\beta^{-p+1}$$

and

 $\gamma_n=\frac{n\mathbf{u}}{1-n\mathbf{u}}.$

Applying the algorithm of P.,O., R., and O. to x_i , $1 \le i \le n$, and if $n\mathbf{u} < 1$, then, even in case of underflow (but without overflow), the final result σ satisfies

$$\left|\sigma - \sum_{i=1}^{n} x_i\right| \le \mathbf{u} \left|\sum_{i=1}^{n} x_i\right| + \gamma_{n-1}^2 \sum_{i=1}^{n} |x_i|.$$

ULP : Unit in the Last Place

Radix β , precision p. In the following, $x \in \mathbb{R}$ and X is a FP number that approximates x.

Definition 6

If
$$|x| \in [\beta^e, \beta^{e+1})$$
 then $ulp(x) = \beta^{\max(e, e_{\min}) - p + 1}$.

Property 1

In radix 2,

$$|X-x| < \frac{1}{2} ulp(x) \Rightarrow X = RN(x).$$

Not true in radix \geq 3. Not true (even in radix 2) if we replace ulp (x) by ulp (X).

ULP : Unit in the Last Place

Property 2

In any radix,

$$X = RN(x) \Rightarrow |X - x| \leq \frac{1}{2} ulp(x).$$

Property 3

In any radix,

$$X = RN(x) \Rightarrow |X - x| \leq \frac{1}{2} ulp(X).$$

< A

э

Division using Newton-Raphson iteration and an FMA Simplified version of an algorithm used on the Intel/HP Itanium. Precision p, radix 2. To simplify, assume we compute 1/b. We assume $1 \le b < 2$ (significands of normal FP numbers).

• Newton-Raphson iteration to compute 1/b :

$$y_{n+1} = y_n(2 - by_n)$$

- we lookup $y_0 \approx 1/b$ in a table addressed by the first (typically from 6 to 10) bits of b;
- FMA : computes RN (xy + z) (RS 6000, Power PC, Itanium...);
- the NR iteration is decomposed into 2 FMA instructions :

$$\begin{cases} e_n = \operatorname{RN}(1 - by_n) \\ y_{n+1} = \operatorname{RN}(y_n + e_n y_n) \end{cases}$$

Notice that $e_{n+1} \approx e_n^2$.

25 / 55

Property 4

lf

$$\left|\frac{1}{b}-y_n\right|<\alpha 2^{-k},$$

where $1/2 < \alpha \leq 1$ and $k \geq 1$, then

$$\left| \frac{1}{b} - y_{n+1} \right| < b \left(\frac{1}{b} - y_n \right)^2 + 2^{-k-p} + 2^{-p-1}$$

< $2^{-2k+1} \alpha^2 + 2^{-k-p} + 2^{-p-1}$

⇒ it seems that we can get arbitrarily closer to error 2^{-p-1} (i.e., 1/2 ulp (1/b)), without being able to show a bound below 1/2 ulp (1/b).

3

• • = • • = •

Example : double precision of the IEEE-754 standard Assume p = 53 and $|y_0 - \frac{1}{b}| < 2^{-8}$ (small table), we find

- $|y_1 1/b| < 0.501 \times 2^{-14}$
- $|y_2 1/b| < 0.51 \times 2^{-28}$
- $|y_3 1/b| < 0.57 \times 2^{-53} = 0.57 \text{ ulp} (1/b)$

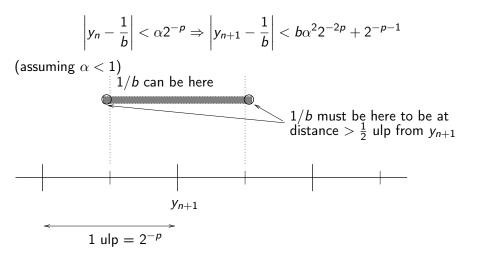
Going further?

Property 5

When y_n approximates 1/b within error < 1 ulp $(1/b) = 2^{-p}$, then, since b is multiple of 2^{-p+1} and y_n is multiple of 2^{-p} , $1 - by_n$ is multiple of 2^{-2p+1} .

But $|1 - by_n| < 2^{-p+1} \rightarrow 1 - by_n$ is exactly representable in FP arithmetic with a p-bit precision \rightarrow exactly computed by one FMA.

$$\Rightarrow \left|\frac{1}{b} - y_{n+1}\right| < b\left(\frac{1}{b} - y_n\right)^2 + 2^{-p-1}.$$



What can be deduced?

- to be at distance > 1/2 ulp from y_{n+1} , 1/b must be within $b\alpha^2 2^{-2p} < b2^{-2p}$ from the midpoint of two consecutive FP numbers;
- implies that distance between y_n and 1/b has the form $2^{-p-1} + \epsilon$, with $|\epsilon| < b2^{-2p}$;
- implies $\alpha < \frac{1}{2} + b2^{-p}$ hence

$$\left|y_{n+1}-\frac{1}{b}\right| < \left(\frac{1}{2}+b2^{-p}\right)^2 b2^{-2p}+2^{-p-1}$$

• so, to be at distance > 1/2 ulp from y_{n+1} , 1/b must be within $(\frac{1}{2} + b2^{-p})^2 b2^{-2p}$ from the midpoint of two consecutive FP numbers.

• • = • • = •

- *b* is a FP number between 1 et $2 \Rightarrow b = B/2^{p-1}$ where $B \in \mathbb{N}$, $2^{p-1} < B \le 2^p 1$;
- the midpoint of two consecutive FP numbers in the neighborhood of 1/b has the form $g = (2G + 1)/2^{p+1}$ where $G \in \mathbb{N}$, $2^{p-1} \leq G < 2^p 1$;
- we deduce

$$\left|g - \frac{1}{b}\right| = \left|\frac{2BG + B - 2^{2p}}{B \cdot 2^{p+1}}\right|$$

• the distance between 1/b and the midpoint of two consecutive FP numbers is a multiple of $1/(B.2^{p+1}) = 2^{-2p}/b$. It is $\neq 0$

Distance between $\frac{1}{b}$ and g, when $\left|\frac{1}{b} - y_{n+1}\right| > \frac{1}{2} \operatorname{ulp} \left(\frac{1}{b}\right)$

- has the form $k2^{-2p}/b$, $k\in\mathbb{Z}$, k
 eq 0;
- we must have

$$\frac{|k| \cdot 2^{-2p}}{b} < \left(\frac{1}{2} + b2^{-p}\right)^2 b2^{-2p}$$

therefore

$$|k| < \left(\frac{1}{2} + b2^{-p}\right)^2 b^2$$

• since b < 2, as soon as $p \ge 4$, the only solution is |k| = 1;

• moreover, for |k| = 1, elementary manipulation shows that the only possible solution is

$$b = 2 - 2^{-p+1}$$

How do we procede?

we want

$$B = 2^{p} - 1,$$

 $2^{p-1} \le G \le 2^{p} - 1$
 $B(2G + 1) = 2^{2p} \pm 1$

Only one solution : $B = 2^{p} - 1$ and $G = 2^{p-1}$: comes from $2^{2p} - 1 = (2^{p} - 1)(2^{p} + 1)$;

- except for that B (thus for the corresponding value $b = B/2^{p-1}$ of b), we are certain that $y_{n+1} = RN(1/b)$;
- for $B = 2^{p} 1$: we try the algorithm with the two values of y_{n} within one ulp from 1/b (i.e. 1/2 and $1/2 + 2^{-p}$). In practice, it works (otherwise : do dirty things).

Application : double precision (p = 53)

We start from y_0 such that $|y_0 - \frac{1}{b}| < 2^{-8}$. We compute :

э

In practice : two iterations

Markstein iterations

$$\begin{cases} e_n = \operatorname{RN}(1 - by_n) \\ y_{n+1} = \operatorname{RN}(y_n + e_n y_n) \end{cases}$$

Goldschmidt iterations

$$\begin{cases} e_{n+1} = \operatorname{RN}(e_n^2) \\ y_{n+1} = \operatorname{RN}(y_n + e_n y_n) \end{cases}$$

More accurate ("self correcting"), sequential

Less accurate, faster (parallel)

In practice : we start with Goldschmidt iterations, and switch to Markstein iterations for the final steps.

Double roundings

```
C program :
```

```
double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;
```

Depending on the environment, we obtain 3.6893488147419103232e+19 or 3.6893488147419111424e+19 (which is the binary64 number closest to the exact product).

Double roundings

- several FP formats supported in a given environment \rightarrow difficult to know in which format some operations are performed;
- may make the result of a sequence of operations difficult to predict;
- for instance, the C99 Std states :

the values of operations with floating operands and values subject to the usual arithmetic conversions and of floating constants are evaluated to a format whose range and precision may be greater than required by the type.

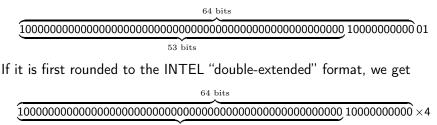
Double roundings

Assume the various declared variables of a program are of the same format. Two phenomenons may occur when a wider format is available :

- for implicit variables such as the result of "a+b" in "d = (a+b)*c"): not clear in which format they are computed;
- explicit variables may be first computed in the wider format, and then rounded to their destination format → sometimes leads to a problem called double rounding.

What happened in the example?

The exact value of a*b is 36893488147419107329. In binary :



53 bits

if that intermediate value is rounded to the binary64 destination format, this gives (round-to-nearest-even rounding mode)

53 bits

 $= 36893488147419103232_{10},$

 \rightarrow rounded down, whereas it should have been rounded up.

J.-M. Muller

Is it a problem?

- In most applications, these phenomenons are innocuous;
- they make the behavior of some numerical programs difficult to predict (interesting examples given by Monniaux);
- most compilers offer options that prevent this problem. However,
 - restricts the portability of numerical programs : e.g., difficult to make sure that one will always use 2Sum with the right compilation switches;
 - may have a bad impact on the accuracy of programs, since it is in general more accurate to perform the intermediate calculations in a wider format.
- \rightarrow examine which properties remain true when double roundings occur.

Notation

- precision-p target format, and precision-(p + p') wider "internal" format;
- when the precision is omitted, it is p (e.g. "FPN" means "precision-p FPN");
- RN k(u) means u rounded to the nearest precision-k FP number (assuming round to nearest even);

Double rounding \rightarrow the error of a + b may not be a FPN Consider $a = 1 \underbrace{xxxx} \cdots x$ 01, where $xxxx \cdots x$ is any (p - 3)-bit bit-chain. Also consider, $b = 0.0 \underbrace{111111 \cdots 1}_{p \text{ ones}} = \frac{1}{2} - 2^{-p-1}$. We have : a + b = 1xxxx...x01.0111111...1,

$$p$$
 bits p bits

so that if $1 \leq p' \leq p$, $u = RN_{p+p'}(a+b) = 1xxxx...x01.100...0$, we have

$$s = RN_p(u) = 1xxxx...x10 = a + 1$$

Therefore,

$$s - (a + b) = a + 1 - (a + \frac{1}{2} - 2^{-p-1}) = \frac{1}{2} + 2^{-p-1} = 0.$$
 10000...01
_{p+1 bits},

which is not exactly representable in precision-p FP arithmetic.

J.-M. Muller

Double roundings and double rounding biases

When the arithmetic operation $x \top y$ appears in a program :

• a double rounding occurs if what is actually performed is

 $\operatorname{RN}_{p}\left(\operatorname{RN}_{p+p'}(x\top y)\right),$

 a double rounding bias occurs if a double rounding occurs and the obtained result differs from RN p(x⊤y).

2Sum and double roundings

Algorithm 4 (2Sum-with-double-roundings(*a*, *b*))

(1)
$$s \leftarrow RN_p(RN_{p+p'}(a+b))$$
 or $RN_p(a+b)$
(2) $a' \leftarrow RN_p(RN_{p+p'}(s-b))$ or $RN_p(s-b)$)
(3) $b' \leftarrow \circ(s-a')$
(4) $\delta_a \leftarrow RN_p(RN_{p+p'}(a-a'))$ or $RN_p(a-a')$
(5) $\delta_b \leftarrow RN_p(RN_{p+p'}(b-b'))$ or $RN_p(b-b')$
(6) $t \leftarrow RN_p(RN_{p+p'}(\delta_a+\delta_b))$ or $RN_p(\delta_a+\delta_b)$

 $\circ(u)$: RN $_{p}(u)$, RN $_{p+p'}(u)$, or RN $_{p}(RN _{p+p'}(u))$, or any faithful rounding.

Theorem 7

If $p \ge 4$ and p + p', with $p' \ge 2$. If a and b are precision-p FPN, and if no overflow occurs, then Algorithm 4 satisfies :

- if no double rounding bias occurred when computing s then t = (a + b s) exactly;
- otherwise, $t = RN_p(a+b-s)$.

Rump, Ogita and Oishi's cascaded summation algorithm

Algorithm 5

 $s \leftarrow a_{1}$ $e \leftarrow 0$ for i = 2 to n do $(s, e_{i}) \leftarrow 2Sum\text{-with-double-roundings}(s, a_{i})$ $e \leftarrow RN_{p}(RN_{p+p'}(e + e_{i}))$ end for
return $RN_{p}(RN_{p+p'}(s + e))$

Pichat, Rump, Ogita and Oishi's summation algorithm

Theorem 8

Assuming $p \ge 8$, $p' \ge 4$, and $n < \frac{1}{2u'}$, the final value σ returned by Algorithm 5 satisfies

$$\left| \sigma - \sum_{i=1}^{n} a_{i} \right| \leq \left(2^{-p} + 2^{-p-p'} + 2^{-2p-p'} \right) \cdot \sum_{i=1}^{n} a_{i} + 2^{-2p} \cdot \left(4n^{2} - 10n - 5 \right) \cdot \left(1 + 2^{-p'+1} + \frac{3}{200} \right) \cdot \sum_{i=1}^{n} |a_{i}|.$$

Rump, Ogita and Oishi's *K*-fold summation algorithm Algorithm 6 (VecSum(a), where $a = (a_1, a_2, ..., a_n)$)

$$p \leftarrow a$$

for $i = 2$ to n do
 $(p_i, p_{i-1}) \leftarrow 2Sum(p_i, p_{i-1})$
end for
return p

Algorithm 7 (K-fold summation algorithm)

```
for k = 1 to K - 1 do

a \leftarrow VecSum(a)

end for

c = a_1

for i = 2 to n - 1 do

c \leftarrow RN(c + a_i)

end for

return RN(a_n + c)
```

Rump, Ogita and Oishi's K-fold summation algorithm

• without double roundings, if 4nu < 1, the FPN σ returned by Algorithm 7 satisfies

$$\left|\sigma - \sum_{i=1}^{n} a_i\right| \le \left(u + \gamma_{n-1}^2\right) \left|\sum_{i=1}^{n} a_i\right| + \gamma_{2n-2}^{\mathcal{K}} \sum_{i=1}^{n} |a_i|.$$
(1)

• if a double-rounding bias occurs in the first call to VecSum, not possible to show an error bound better than prop. to $2^{-2p} \sum_{i=1}^{n} |a_i|$;

Multiplication by "infinitely precise" constants

- We want RN (*Cx*), where x is a FP number, and C a real constant (i.e., known at compile-time).
- Typical values of $C : \pi, 1/\pi, \ln(2), \ln(10), e, 1/k!, B_k/k!, 1/10^k, \cos(k\pi/N) \text{ and } \sin(k\pi/N), \dots$
- another frequent case : $C = \frac{1}{\text{FP number}}$ (division by a constant);

- introduced by Brisebarre and M.,
- Cx with correct rounding (assuming rounding to nearest even);
- *C* is not a FP number;
- A correctly rounded fma instruction is available. Operands stored in a binary FP format of precision *p*;
- We assume that the two following FP numbers are pre-computed :

$$\begin{cases} C_h = \operatorname{RN}(C), \\ C_\ell = \operatorname{RN}(C - C_h), \end{cases}$$

Algorithm 8 (Multiplication by C with a product and an fma)

From x, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result : u_2 .

3

Algorithm 8 (Multiplication by C with a product and an fma)

From *x*, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result : u_2 .

Warning! There exist C and x s.t. $u_2 \neq \text{RN}(Cx)$ – easy to build.

3

Algorithm 8 (Multiplication by C with a product and an fma)

From *x*, compute

$$\begin{cases} u_1 = RN(C_{\ell}x), \\ u_2 = RN(C_hx + u_1). \end{cases}$$

Returned result : u_2 .

Warning! There exist C and x s.t. $u_2 \neq \text{RN}(Cx)$ – easy to build.

Fast methods for analyzing a given C

Examples

Theorem 9 (Correctly rounded multiplication by π)

The algorithm always returns a correctly rounded result in double precision with $C = 2^{j}\pi$, where j is any integer, provided no under/overflow occur.

- Same thing with $C = \ln(2)$;
- with $C = 1/\pi$, the only numbers x for which the algorithm does not work in double precision are of the form

 $6081371451248382 \times 2^{\pm k}$.

Conclusion

- operations fully specified (the double rounding problem should partly vanish when IEEE 754-2008 becomes widely implemented);
- derive algorithms, as well as proofs of properties;
- formal proof investigated by several people;

Floating-point arithmetic on the web

- W. Kahan : http://http.cs.berkeley.edu/~wkahan/
- Goldberg's paper "What every computer scientist should know about Floating-Point arithmetic" http://www.validlab.com/goldberg/paper.pdf
- D. Hough : http://www.validlab.com/754R/
- The Arenaire team of lab. LIP (ENS Lyon) http://www.ens-lyon.fr/LIP/Arenaire/
- my own web page http://perso.ens-lyon.fr/jean-michel.muller/

Books on Floating-Point Arithmetic

Michael Overton Numerical Computing with IEEE Floating Point Arithmetic Siam, 2001

Bo Einarsson Accuracy and Reliability in Scientific Computing Siam, 2005

Jean-Michel Muller Elementary Functions, algorithms and implementation, 2ème édition Birkhauser, 2006

Brisebarre, de Dinechin, Jeannerod, Lefèvre, Melquiond, Muller (coordinator), Revol, Stehlé and Torres **A Handbook of Floating-Point Arithmetic** Birkhauser, 2010.