
Anatomy of SINGULAR

talk at

MaGiX@LIX 2011
-

Hans Schönemann

hannes@mathematik.uni-kl.de

Department of Mathematics

University of Kaiserslautern

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 1

Overview of SINGULAR

Computations in very general rings, including polynomial rings,
localizations hereof at a prime ideal and tensor products of
such rings. This includes, in particular, Buchberger’s and
Mora’s algorithm as special cases.

Many ground fields for the above rings, such as the rational
numbers, finite fields Z/p, p a prime ≤ 32003, finite fields with
q = pn elements, transcendental and algebraic extensions,
floating point real numbers, even rings: integers, Z/m, etc.

Usual ideal theoretic operations, such as intersection, ideal
quotient, elimination and saturation and more advanced
algorithms based on free resolutions of finitely generated
modules. Several combinatorial algorithms for computing
dimensions, multiplicities, Hilbert series

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 2

Overview of SINGULAR II

A programming language, which is C-like and which is quite
comfortable and has the usual if-else, for, while, break . . .
constructs.

Library of procedures, written in the SINGULAR language,
which are useful for many applications to mathematical
problems.

Links to communicate with other systems or with itself. Link
types: Ascii, MP, ssi, SCSCP (experimental).

can be compiled and used as a C++ library.

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 3

Algorithms in the Kernel (C/C++)

Standard basis algorithms (Buchberger, SlimGB, factorizing
Buchberger, FGLM, Hilbert–driven Buchberger, ...)

Syzygies, free resolutions (Schreyer, La Scala, ...)

Multivariate polynomial factorization

absolute factorization (factorization over algebraically closed
fields)

Ideal theory (intersection, quotient, elimination, saturation)

combinatorics (dimension, Hilbert polynomial, multiplicity, ...)

many libraries: ... control.lib, surf.lib, solve.lib, primdec.lib,
resolve.lib,....

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 4

Parts of Singular

external: GMP: long integers, long floats

external: NTL: univariate GCD, univariate factorization

omalloc memory management

factory/libfac multivariate GCD and factorization, etc.

kernel: coefficient arithmetic, polynomial arithmetic,
non-commutative rings, Gröbner bases/standard
bases/syzygies, operation with ideals/free modules, linear
algebra, numerical solving

interpreter: flex/bison generated, calls via tables

SINGULAR libraries

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 5

Problems for an efficient implementation

How should polynomials and monomial be represented and
their operations be implemented?

What is the best way to implement coefficients?

How should the memory management be realized?

choosing the right algorithm (FGLM, Gröbner walk, standard
basis computation driven by Hilbert function, etc.)

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 6

Monomial representations

Macaulay 3.0 (1994): encode monomial by coefficient and an
integer (enumerating all monomial by the monomial ordering)
comparing is very fast, multiplication slow, divisibility test
improved by a second represention for head terms: vector of
exponents
degree bound

PoSSo (1993-1995): encode monomial by coefficient and
exponent vector and ordering vector:
(the exponent vector multiplied by the order matrix): only
lexicographical comparison necessary (fast)
fast monomial operations: simply add the complete vector for
multiplication etc.
but used a ”lot” of memory for each monomial

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 7

Monomial representations

CoCoA: Hilbert driven algorithm (1997): bit support for fast
divisibility tests

Faugéres Algorithm F4 (1999): monomial correspond to matrix
entries: a monomial is a coefficient and a (column) number

SINGULAR 1.4: exponent vector as char/short, operations on an
array of long: smaller representation, vectorized monomial
operations.

SINGULAR 2.0: exponent vector as bit fields, operations on an
array of long: smaller representation, vectorized monomial
operations, Geo buckets, divisibility tests by generalized bit
support

SDMP (Maple): simplified version of the representation above

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 8

Monomial representations inSINGULAR 2-0

bit fields for exponents

degree of (sub-)sets of variables according to the monomial
ordering

For example 9ab2x3y4z ∈ K[a, b][x, y] with an degree-reverse-lex.
ordering on both blocks of variables will be representetd as:
(9, ((3), (1, 2)), ((8), (3, 4, 1))) coefficient: 9
degree for first block (a,b): 3
exponents first block: 1,2
degree for second block (x,y,z): 8
exponents second block: 3,4,1
used space: 5 words

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 9

Bit support

use a machine int (integer ∈ 0..231 resp. 263) for an pre-test

> 16 variables: use 1 bit per variable:
bit i = 1: exponent of xi is non-zero

10..16 variables: use 2 bits per variable:
field i = 00: exponent of xi is 0
field i = 01: exponent of xi is 1
field i = 11: exponent of xi is > 1

9..10 variables: use 3 bits per variable
...

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 10

Geo buckets

experimental implementation in Macaulay 3.0 (1998) by Yan

lazy addition of polynomials: try to add only polynomials of the
ßamelength

store polynomials as n-tupel of partial polynomials (of length 4,
42, ..., 4n)

extract leading term from the leading terms of the partial
polynomial (if needed)

simplify a bucket to a normal polynomial after some operations

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 11

Memory management I

Most of SINGULAR’s computations boil down to primitive polynomial
operations like copying, deleting, adding, and multiplying of
polynomials. For example, standard bases computations over finite
fields spent (on average) 90 % of their time realizing the operation p
- m*q where m is a monomial, and p,q are polynomials.
Size of monomials: minimum size is 3 words, average size is 4 to 6
machine words

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 12

Memory management II

Requirements of a memory manager for SINGULAR:

(1) allocation/deallocation of (small) memory blocks must be
extremely fast

(2) consecutive memory blocks in linked lists must have a high
locality of reference

(3) the size overhead to maintain small blocks of memory must be
small

(4) the memory manager must have a clean API and it must
support debugging

(5) the memory manager must be customizable, tunable,
extensible and portable

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 13

Memory management III

OMALLOC manages small blocks of memory on a per-page basis. That
is, each used page is split up into a page-header and equally-sized
memory blocks. The page-header has a size of 6 words (i.e., 24
Byte on a 32 Bit machine), and stores (among others) a pointer to
the free-list and a counter of the used memory blocks of this page.
On memory allocation, an appropriate page (i.e. one which has a
non-empty free list of the appropriate block size) is determined
based on the used memory allocation mechanism and its
arguments. The counter of the page is incremented, and the
provided memory block is dequeued from the free-list of the page.

very fast allocation/deallocation of small memory blocks

high locality of reference (may be further improved by using
specific pages (i.e. specific free lists) for certain elements)

small maintenance size overhead: 24 Bytes per page (0.6 %)

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 14

example in char p example in char 0

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 15

Allocated and active pages

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

’omalloc’ using 1:2
’normal_alloc’ using 1:2

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700

’omalloc’ using 1:3
’normal_alloc’ using 1:3

example in char p

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600

’omalloc’ using 1:2
’normal_alloc’ using 1:2

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600

’omalloc’ using 1:3
’normal_alloc’ using 1:3

example in char 0Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 16

Encoding of polynomials: Factory

each polynomial is represented as a univariate polynomial
which has elements of a polynomial ring as coefficients.

ordering of the variables: the level of the variable, an integer.

the level of a polynomial is the maximum of the level of its parts

if f.level()==0: base domain (Z,Q,Z/p,...)

0> f.level(): algebraic extension

0 < f.level(): (nonconstant) polynomial

(2,1)

(3,1)

(0,0)

(1,2) (0,0)

5 4 -3

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 17

coeffs/rings: separation of classes

number is the type for coeffcients, coeffs holds additional
parameters and the function table

poly is the type for polynomials, ring holds additional
parameters and the function table

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 18

Templates for polynomial operations

a general version of each routine which uses procedures from
the tables in coeff/ring

more versions depending on the size of the monomial (loop
unrolling), the type of the coefficients (inlining) exist

currently: 15 routines, 2173 implementations via macro
expansion

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 19

Tables for the interpeter

(operation, argument type(s)) -> procedure to call

automatic type conversions (type A, type B) -> procedure for
conversion

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 20

Parallelization

coarse: seperate processes on (possibly) seperate machines:
via links (ssi,MP)

fine: via threads - planned.

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 21

SINGULAR as a C/C++ library

C++-class wrapper for poly etc.: in preparation

direct use of poly, etc.

use libsingular.a: all parts of SINGULAR in one file

use libsingular.so: main part of SINGULAR (kernel,
interpreter) in one file

currently used by:

SAGE (libsingular.so)

gfan (experimental: libsingular.a)

gap (experimental: libsingular.so)

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 22

Usage ofSINGULAR as a C/C++ library

send a string of Singular commands to the interpreter

call via tables in the interpreter (universal interface)

call routines for polynomials, ideals etc.

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 23

Restructuring of SINGULAR as a set of many C/C++ libraries

external: GMP: long integers, long floats

external: FLINT (planned): univariate GCD, univariate
factorization

omalloc memory management

factory/libfac multivariate GCD and factorization, etc.

libcoeff coeffcient arithmetic

libpoly polynomial arithmetic (including non-commutative
rings)

kernel - planned as several libs: Gröbner bases/standard
bases/syzygies, operation with ideals/free modules, linear
algebra, numerical solving

interpreter: flex/bison generated, calls via tables

SINGULAR libraries

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 24

SINGULAR: www.singular.uni-kl.de

Anatomy of SINGULAR talk at MaGiX@LIX 2011- – p. 25

	Overview of {sc Singular}
	Overview of {sc Singular} II
	Algorithms in the Kernel (C/C_{++})
	Parts of Singular
	Problems for an efficient implementation
	Monomial representations
	Monomial representations
	Monomial representations in {sc Singular 2-0}
	Bit support
	Geo buckets
	Memory management I
	Memory management II
	Memory management III
	Allocated and active pages
	Encoding of polynomials: Factory
	coeffs/rings: separation of classes
	Templates for polynomial operations
	Tables for the interpeter
	Parallelization
	{sc Singular} as a C/C++ library
	Usage of {sc Singular} as a C/C++ library
	Restructuring of {sc Singular} as a set of many C/C++ libraries
	SINGULAR: www.singular.uni-kl.de

