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Overview of SINGULAR

Computations in very general rings, including polynomial rings,
localizations hereof at a prime ideal and tensor products of
such rings. This includes, in particular, Buchberger’s and
Mora’s algorithm as special cases.

Many ground fields for the above rings, such as the rational
numbers, finite fields Z/p, p a prime ≤ 32003, finite fields with
q = pn elements, transcendental and algebraic extensions,
floating point real numbers, even rings: integers, Z/m, etc.

Usual ideal theoretic operations, such as intersection, ideal
quotient, elimination and saturation and more advanced
algorithms based on free resolutions of finitely generated
modules. Several combinatorial algorithms for computing
dimensions, multiplicities, Hilbert series . . . .
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Overview of SINGULAR II

A programming language, which is C-like and which is quite
comfortable and has the usual if-else, for, while, break . . .
constructs.

Library of procedures, written in the SINGULAR language,
which are useful for many applications to mathematical
problems.

Links to communicate with other systems or with itself. Link
types: Ascii, MP, ssi, SCSCP (experimental).

can be compiled and used as a C++ library.
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Algorithms in the Kernel (C/C++)

Standard basis algorithms (Buchberger, SlimGB, factorizing
Buchberger, FGLM, Hilbert–driven Buchberger, ...)

Syzygies, free resolutions (Schreyer, La Scala, ...)

Multivariate polynomial factorization

absolute factorization (factorization over algebraically closed
fields)

Ideal theory (intersection, quotient, elimination, saturation)

combinatorics (dimension, Hilbert polynomial, multiplicity, ...)

many libraries: ... control.lib, surf.lib, solve.lib, primdec.lib,
resolve.lib,....
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Parts of Singular

external: GMP: long integers, long floats

external: NTL: univariate GCD, univariate factorization

omalloc memory management

factory/libfac multivariate GCD and factorization, etc.

kernel: coefficient arithmetic, polynomial arithmetic,
non-commutative rings, Gröbner bases/standard
bases/syzygies, operation with ideals/free modules, linear
algebra, numerical solving

interpreter: flex/bison generated, calls via tables

SINGULAR libraries
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Problems for an efficient implementation

How should polynomials and monomial be represented and
their operations be implemented?

What is the best way to implement coefficients?

How should the memory management be realized?

choosing the right algorithm (FGLM, Gröbner walk, standard
basis computation driven by Hilbert function, etc.)
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Monomial representations

Macaulay 3.0 (1994): encode monomial by coefficient and an
integer (enumerating all monomial by the monomial ordering)
comparing is very fast, multiplication slow, divisibility test
improved by a second represention for head terms: vector of
exponents
degree bound

PoSSo (1993-1995): encode monomial by coefficient and
exponent vector and ordering vector:
(the exponent vector multiplied by the order matrix): only
lexicographical comparison necessary (fast)
fast monomial operations: simply add the complete vector for
multiplication etc.
but used a ”lot” of memory for each monomial
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Monomial representations

CoCoA: Hilbert driven algorithm (1997): bit support for fast
divisibility tests

Faugéres Algorithm F4 (1999): monomial correspond to matrix
entries: a monomial is a coefficient and a (column) number

SINGULAR 1.4: exponent vector as char/short, operations on an
array of long: smaller representation, vectorized monomial
operations.

SINGULAR 2.0: exponent vector as bit fields, operations on an
array of long: smaller representation, vectorized monomial
operations, Geo buckets, divisibility tests by generalized bit
support

SDMP (Maple): simplified version of the representation above
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Monomial representations inSINGULAR 2-0

bit fields for exponents

degree of (sub-)sets of variables according to the monomial
ordering

For example 9ab2x3y4z ∈ K[a, b][x, y] with an degree-reverse-lex.
ordering on both blocks of variables will be representetd as:
(9, ((3), (1, 2)), ((8), (3, 4, 1))) coefficient: 9
degree for first block (a,b): 3
exponents first block: 1,2
degree for second block (x,y,z): 8
exponents second block: 3,4,1
used space: 5 words
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Bit support

use a machine int (integer ∈ 0..231 resp. 263) for an pre-test

> 16 variables: use 1 bit per variable:
bit i = 1: exponent of xi is non-zero

10..16 variables: use 2 bits per variable:
field i = 00: exponent of xi is 0
field i = 01: exponent of xi is 1
field i = 11: exponent of xi is > 1

9..10 variables: use 3 bits per variable
...
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Geo buckets

experimental implementation in Macaulay 3.0 (1998) by Yan

lazy addition of polynomials: try to add only polynomials of the
ßamelength

store polynomials as n-tupel of partial polynomials (of length 4,
42, ..., 4n)

extract leading term from the leading terms of the partial
polynomial (if needed)

simplify a bucket to a normal polynomial after some operations
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Memory management I

Most of SINGULAR’s computations boil down to primitive polynomial
operations like copying, deleting, adding, and multiplying of
polynomials. For example, standard bases computations over finite
fields spent (on average) 90 % of their time realizing the operation p
- m*q where m is a monomial, and p,q are polynomials.
Size of monomials: minimum size is 3 words, average size is 4 to 6
machine words
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Memory management II

Requirements of a memory manager for SINGULAR:

(1) allocation/deallocation of (small) memory blocks must be
extremely fast

(2) consecutive memory blocks in linked lists must have a high
locality of reference

(3) the size overhead to maintain small blocks of memory must be
small

(4) the memory manager must have a clean API and it must
support debugging

(5) the memory manager must be customizable, tunable,
extensible and portable
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Memory management III

OMALLOC manages small blocks of memory on a per-page basis. That
is, each used page is split up into a page-header and equally-sized
memory blocks. The page-header has a size of 6 words (i.e., 24
Byte on a 32 Bit machine), and stores (among others) a pointer to
the free-list and a counter of the used memory blocks of this page.
On memory allocation, an appropriate page (i.e. one which has a
non-empty free list of the appropriate block size) is determined
based on the used memory allocation mechanism and its
arguments. The counter of the page is incremented, and the
provided memory block is dequeued from the free-list of the page.

very fast allocation/deallocation of small memory blocks

high locality of reference ( may be further improved by using
specific pages (i.e. specific free lists) for certain elements)

small maintenance size overhead: 24 Bytes per page (0.6 %)
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example in char p example in char 0
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Allocated and active pages
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Encoding of polynomials: Factory

each polynomial is represented as a univariate polynomial
which has elements of a polynomial ring as coefficients.

ordering of the variables: the level of the variable, an integer.

the level of a polynomial is the maximum of the level of its parts

if f.level()==0: base domain (Z,Q,Z/p,...)

0> f.level(): algebraic extension

0 < f.level(): (nonconstant) polynomial

(2,1)

(3,1)

(0,0)

(1,2) (0,0)

5 4 -3
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coeffs/rings: separation of classes

number is the type for coeffcients, coeffs holds additional
parameters and the function table

poly is the type for polynomials, ring holds additional
parameters and the function table
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Templates for polynomial operations

a general version of each routine which uses procedures from
the tables in coeff/ring

more versions depending on the size of the monomial (loop
unrolling), the type of the coefficients (inlining) exist

currently: 15 routines, 2173 implementations via macro
expansion
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Tables for the interpeter

(operation, argument type(s)) -> procedure to call

automatic type conversions (type A, type B) -> procedure for
conversion
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Parallelization

coarse: seperate processes on (possibly) seperate machines:
via links (ssi,MP)

fine: via threads - planned.
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SINGULAR as a C/C++ library

C++-class wrapper for poly etc.: in preparation

direct use of poly, etc.

use libsingular.a: all parts of SINGULAR in one file

use libsingular.so: main part of SINGULAR (kernel,
interpreter) in one file

currently used by:

SAGE (libsingular.so)

gfan (experimental: libsingular.a)

gap (experimental: libsingular.so)
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Usage ofSINGULAR as a C/C++ library

send a string of Singular commands to the interpreter

call via tables in the interpreter (universal interface)

call routines for polynomials, ideals etc.
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Restructuring of SINGULAR as a set of many C/C++ libraries

external: GMP: long integers, long floats

external: FLINT (planned): univariate GCD, univariate
factorization

omalloc memory management

factory/libfac multivariate GCD and factorization, etc.

libcoeff coeffcient arithmetic

libpoly polynomial arithmetic (including non-commutative
rings)

kernel - planned as several libs: Gröbner bases/standard
bases/syzygies, operation with ideals/free modules, linear
algebra, numerical solving

interpreter: flex/bison generated, calls via tables

SINGULAR libraries
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SINGULAR: www.singular.uni-kl.de
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