

Accelerating lattice reduction algorithms with floating-point arithmetic

Damien Stehlé

http://perso.ens-lyon.fr/damien.stehle/

LIP - CNRS/ENSL/INRIA/UCBL/U. Lyon

MaGiX@LiX, September 2011

Goals and plan of the talk

Goals:

- To describe efficient techniques for lattice reduction.
- To illustrate how numerical linear algebra can be rigorously used to accelerate an algebraic computation.

Plan of the talk:

- Reminders on Euclidean lattices.
- Osing floating-point arithmetic within lattice algorithms.
- The fplll library.

Goals and plan of the talk

Goals:

- To describe efficient techniques for lattice reduction.
- To illustrate how numerical linear algebra can be rigorously used to accelerate an algebraic computation.

Plan of the talk:

- Reminders on Euclidean lattices.
- Osing floating-point arithmetic within lattice algorithms.
- The fplll library.

Euclidean lattices

Lattice
$$\equiv \{\sum_{i\leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}.$$

If the \mathbf{b}_i 's are linearly independent, they are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattice reduction: find a nice basis, given an arbitrary one

3/30

Euclidean lattices

Lattice
$$\equiv \{\sum_{i\leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}.$$

If the \mathbf{b}_i 's are linearly independent, they are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$\left[\begin{array}{rrr} -2 & 1 \\ 10 & 6 \end{array}\right] = \left[\begin{array}{rrr} 4 & -3 \\ 2 & 4 \end{array}\right] \cdot \left[\begin{array}{rrr} 1 & 1 \\ 2 & 1 \end{array}\right].$$

Lattice reduction: find a nice basis, given an arbitrary of

Euclidean lattices

Lattice
$$\equiv \{\sum_{i\leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}.$$

If the \mathbf{b}_i 's are linearly independent, they are called a basis.

Bases are not unique, but can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattice reduction:

find a nice basis, given an arbitrary one.

Minimum: $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski's theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction: Find basis $(\mathbf{b}_i)_i$ s.t. HF(B) is small, with

 $\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$

Minimum:

 $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski's theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction: Find basis (**b**_i)_i s.t. HF(*B*) is small, with

 $\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/r}}$

Minimum:

 $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski's theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction: Find basis (**b**_i)_i s.t. HF(*B*) is small, with

$$\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$$

Minimum:

 $\lambda(L) = \min (\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant:

det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski's theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

Find basis $(\mathbf{b}_i)_i$ s.t. HF(B) is small, with

 $\mathsf{HF}(B) := \frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$

Minimum:

 $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Lattice determinant:

det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski's theorem: $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{1/n}.$

Lattice reduction:

Find basis $(\mathbf{b}_i)_i$ s.t. HF(B) is small, with

$$\mathsf{HF}(B):=\frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$$

- SVP_{γ}: Given a basis of *L*, find $\mathbf{b} \in L$ with $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.
- BDD_{γ}: Given a basis of *L* and **t** with dist(**t**, *L*) $\leq \gamma^{-1} \cdot \lambda(L)$

- And many variants: CVP_{γ} , SIVP_{γ} , uSVP_{γ} , etc.
- Very hard for small γ: CVP, SIVP, uSVP, and SVP are NP-hard under (randomized) reductions.
- "Easy" for exponential γ.

- SVP_{γ} : Given a basis of *L*, find $\mathbf{b} \in L$ with
 - $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L).$
- BDD_{γ} : Given a basis of *L* and **t** with

$$\operatorname{dist}(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L),$$

- And many variants: CVP_{γ} , $SIVP_{\gamma}$, $uSVP_{\gamma}$, etc.
- Very hard for small γ: CVP, SIVP, uSVP, and SVP are NP-hard under (randomized) reductions.
- "Easy" for exponential γ.

- SVP_{γ} : Given a basis of *L*, find **b** \in *L* with
 - $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L).$
- BDD_{γ} : Given a basis of *L* and **t** with

$$\operatorname{dist}(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L),$$

- And many variants: CVP_{γ} , SIVP_{γ} , uSVP_{γ} , etc.
- Very hard for small γ: CVP, SIVP, uSVP, and SVP are NP-hard under (randomized) reductions.
- "Easy" for exponential γ.

- SVP_{γ} : Given a basis of *L*, find **b** \in *L* with
 - $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L).$
- BDD_{γ} : Given a basis of L and t with

$$\operatorname{dist}(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L),$$

- And many variants: CVP_{γ} , SIVP_{γ} , uSVP_{γ} , etc.
- Very hard for small γ: CVP, SIVP, uSVP, and SVP are NP-hard under (randomized) reductions.
- "Easy" for exponential γ .

- SVP_{γ} : Given a basis of *L*, find **b** \in *L* with
 - $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L).$
- BDD_{γ} : Given a basis of L and t with

$$\operatorname{dist}(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L),$$

find $\mathbf{b} \in L$ closest to \mathbf{t} .

- And many variants: CVP_{γ} , SIVP_{γ} , uSVP_{γ} , etc.
- Very hard for small γ: CVP, SIVP, uSVP, and SVP are NP-hard under (randomized) reductions.
- "Easy" for exponential γ .

All known algorithms rely on some kind of lattice reduction.

Lattices tend to pop out every time one wants to use linear algebra but is restricted to discrete transformations.

• Computer algebra: factorisation of rational polynomials, reconstruction of algebraic numbers.

Given α algebraic of degree *n*, the shortest vector in the lattice

$$L := L[(\mathbf{b}_i)_i], \text{ with } B = \begin{bmatrix} C & C\alpha & C\alpha^2 & \dots & C\alpha^n \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

leads to the minimal polynomial of α (for some large C)

6/30

Why do we care about lattices?

Lattices tend to pop out every time one wants to use linear algebra but is restricted to discrete transformations.

 Computer algebra: factorisation of rational polynomials, reconstruction of algebraic numbers.
 Given α algebraic of degree n, the shortest vector in the lattice

$$L := L[(\mathbf{b}_i)_i], \text{ with } B = \begin{bmatrix} C & C\alpha & C\alpha^2 & \dots & C\alpha^n \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

leads to the minimal polynomial of α (for some large C).

• Cryptography: cryptanalyses of variants of RSA.

Coppersmith's methods [J. Crypto'98] allow the computation of all unexpectedly small roots of polynomials. Example [HerMay'10]: n = 60, entries up to > 30,000 bits.

• Communications theory: MIMO, GPS.

$$\mathbf{m} \in \mathbb{Z}^n \mapsto \mathbf{y} = H \cdot \mathbf{m} + \mathbf{e} \in \mathbb{R}^n.$$

Knowing *H* and **y**, find **m**.

- Cryptography: cryptanalyses of variants of RSA.
 Coppersmith's methods [J. Crypto'98] allow the computation of all unexpectedly small roots of polynomials.
 Example [HerMay'10]: n = 60, entries up to > 30,000 bits.
- Communications theory: MIMO, GPS.

$$\mathbf{m} \in \mathbb{Z}^n \mapsto \mathbf{y} = H \cdot \mathbf{m} + \mathbf{e} \in \mathbb{R}^n.$$

Knowing *H* and **y**, find **m**.

- Cryptography: cryptanalyses of variants of RSA.
 Coppersmith's methods [J. Crypto'98] allow the computation of all unexpectedly small roots of polynomials.
 Example [HerMay'10]: n = 60, entries up to > 30,000 bits.
- Communications theory: MIMO, GPS.

$$\mathbf{m} \in \mathbb{Z}^n \mapsto \mathbf{y} = H \cdot \mathbf{m} + \mathbf{e} \in \mathbb{R}^n.$$

Knowing H and y, find m.

- Cryptography: cryptanalyses of variants of RSA.
 Coppersmith's methods [J. Crypto'98] allow the computation of all unexpectedly small roots of polynomials.
 Example [HerMay'10]: n = 60, entries up to > 30,000 bits.
- Communications theory: MIMO, GPS.

$$\mathbf{m} \in \mathbb{Z}^n \mapsto \mathbf{y} = H \cdot \mathbf{m} + \mathbf{e} \in \mathbb{R}^n.$$

Knowing H and \mathbf{y} , find \mathbf{m} .

Several types of lattice reduction

	HKZ	BKZ _k	LLL
Hermite factor	\sqrt{n}	$\simeq \sqrt{k^{rac{n}{k}}}$	$\simeq \sqrt{4/3}^{\frac{n}{2}}$
Time*	2 ^{<i>O</i>(<i>n</i>)}	$2^{O(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Number of arithmetic operations.

• HKZ = Hermite-Korkine-Zolotareff (19th c.).

- LLL = Lenstra-Lenstra-Lovász (1982).
- BKZ = Block Korkine-Zolotareff (Schnorr'87, Hanrot-Pujol-S.'11)

Several types of lattice reduction

	HKZ	BKZ _k	LLL
Hermite factor	\sqrt{n}	$\simeq \sqrt{k}^{rac{n}{k}}$	$\simeq \sqrt{4/3}^{rac{n}{2}}$
Time*	2 ^{<i>O</i>(<i>n</i>)}	$2^{O(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Number of arithmetic operations.

- HKZ = Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász (1982).
- BKZ = Block Korkine-Zolotareff (Schnorr'87, Hanrot-Pujol-S.'11)

Several types of lattice reduction

	HKZ	BKZ _k	LLL
Hermite factor	\sqrt{n}	$\simeq \sqrt{k}^{\frac{n}{k}}$	$\simeq \sqrt{4/3}^{rac{n}{2}}$
Time*	2 ^{<i>O</i>(<i>n</i>)}	$2^{O(k)} \times \operatorname{Poly}(n)$	$\operatorname{Poly}(n)$

*Number of arithmetic operations.

- HKZ = Hermite-Korkine-Zolotareff (19th c.).
- LLL = Lenstra-Lenstra-Lovász (1982).
- BKZ = Block Korkine-Zolotareff (Schnorr'87, Hanrot-Pujol-S.'11)

$(\mathbf{b}_i)_i$ linearly independent.

Damien Stehlé

Damien Stehlé

Equivalently: B = QR with Q orthogonal and R upper triangular. $B = (B^*D^{-1}) \cdot (D\mu^T)$ with $D = \text{diag}(\|\mathbf{b}_i^*\|)$.

Equivalently: B = QR with Q orthogonal and R upper triangular. $B = (B^*D^{-1}) \cdot (D\mu^T)$ with $D = \text{diag}(\|\mathbf{b}_i^*\|)$.

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \leq n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

• $\forall i, j: |r_{i,j}| \le r_{i,i}/2$ [size-reduction] • $\forall i: \delta \cdot r_{i,i}^2 \le r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

Damien Stehlé

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \le n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

• $\forall i, j: |r_{i,j}| \leq r_{i,i}/2$ [size-reduction] • $\forall i: \delta \cdot r_{i,i}^2 \leq r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

LLL-reduced bases have good quality: The $r_{i,i}$'s can't drop too fast: $r_{i+1,i+1}^2 \ge (\delta - \frac{1}{4})r_{i,i}^2$

 $\begin{aligned} \|\mathbf{b}_1\| &\leq 2^{\mathcal{O}(n)} \cdot \lambda(L) \\ \prod \|\mathbf{b}_i\| &\leq 2^{\mathcal{O}(n^2)} \cdot |\det L|. \end{aligned}$

Also allows one to solve BDD, CVP, SIVP, etc with approximation factor $\gamma = 2^{\mathcal{O}(n)}$.

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \leq n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

• $\forall i, j : |r_{i,j}| \le r_{i,i}/2$ [size-reduction] • $\forall i : \delta \cdot r_{i,i}^2 \le r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

LLL-reduced bases have good quality: The $r_{i,i}$'s can't drop too fast: $r_{i+1,i+1}^2 \ge (\delta - \frac{1}{4})r_{i,i}^2$

 $\begin{aligned} \|\mathbf{b}_1\| &\leq 2^{\mathcal{O}(n)} \cdot \lambda(L) \\ \prod \|\mathbf{b}_i\| &\leq 2^{\mathcal{O}(n^2)} \cdot |\det L|. \end{aligned}$

Also allows one to solve BDD, CVP, SIVP, etc with approximation factor $\gamma = 2^{\mathcal{O}(n)}$.

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \leq n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

• $\forall i, j : |r_{i,j}| \le r_{i,i}/2$ [size-reduction] • $\forall i : \delta \cdot r_{i,i}^2 \le r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

LLL-reduced bases have good quality: The $r_{i,i}$'s can't drop too fast: $r_{i+1,i+1}^2 \ge (\delta - \frac{1}{4})r_{i,i}^2$.

$$\begin{aligned} \|\mathbf{b}_1\| &\leq 2^{\mathcal{O}(n)} \cdot \lambda(L) \\ \prod \|\mathbf{b}_i\| &\leq 2^{\mathcal{O}(n^2)} \cdot |\det L|. \end{aligned}$$

Also allows one to solve BDD, CVP, SIVP, etc with approximation factor $\gamma = 2^{\mathcal{O}(n)}$.

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \le n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

• $\forall i, j : |r_{i,j}| \le r_{i,i}/2$ [size-reduction] • $\forall i : \delta \cdot r_{i,i}^2 \le r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

LLL-reduced bases have good quality: The $r_{i,i}$'s can't drop too fast: $r_{i+1,i+1}^2 \ge (\delta - \frac{1}{4})r_{i,i}^2$.

$$\begin{aligned} \|\mathbf{b}_1\| &\leq 2^{\mathcal{O}(n)} \cdot \lambda(L) \\ \prod \|\mathbf{b}_i\| &\leq 2^{\mathcal{O}(n^2)} \cdot |\det L|. \end{aligned}$$

Also allows one to solve BDD, CVP, SIVP, etc with approximation factor $\gamma = 2^{\mathcal{O}(n)}$.

- Reminders on Euclidean lattices.
- **②** Using floating-point arithmetic within lattice algorithms.
- The fplll library.

The classical/rational LLL algorithm

Input: $(\mathbf{b}_i)_{i \le n}$ linearly independent. 1. i := 2. While i < n, do: Perform size-reduction for column *j*: 2. 3. Compute them exactly. 4. For *i* from i - 1 downto 1 do $\mathbf{b}_i := \mathbf{b}_i - |\mathbf{r}_{ii}/\mathbf{r}_{ii}| \mathbf{b}_i$. 5. 6. Update the r_{ii}'s. 7. Test Lovasz's condition: 8. If $\delta \cdot r_{i-1,i-1}^2 \leq r_{ii}^2 + r_{i-1,i}^2$, then j := j+1. Else swap \mathbf{b}_{i-1} and \mathbf{b}_i , $j := \max(j-1, 2)$. 9.

- Assume $B \in \mathbb{Z}^{n \times n}$ with max $\|\mathbf{b}_i\| \leq 2^{\beta}$.
- Number of loop iterations: $\mathcal{O}(n^2\beta/\log(1/\delta))$.
- Total bit-cost: $\mathcal{O}(n^5\beta^2(n+\beta))$ [Kaltofen'83].
The classical/rational LLL algorithm

- Assume $B \in \mathbb{Z}^{n \times n}$ with max $\|\mathbf{b}_i\| \leq 2^{\beta}$.
- Number of loop iterations: $\mathcal{O}(n^2\beta/\log(1/\delta))$.
- Total bit-cost: $\mathcal{O}(n^5\beta^2(n+\beta))$ [Kaltofen'83].

Floating-point LLL

What's wrong with the text-book LLL?

 \Rightarrow The rationals involved in the QR computations may be huge: the numerators and denominators may have up to $O(n\beta)$ bits.

Floating-point LLL

What's wrong with the text-book LLL?

 \Rightarrow The rationals involved in the QR computations may be huge: the numerators and denominators may have up to $O(n\beta)$ bits.

Floating-point LLL, a hybrid algebraic/numeric approach:

- Perform the QR computations with (low-precision) fp arithmetic, while preserving the general structure of LLL.
- If size-reduction is non-trivial, repeat it (iterative refinement).
- Fp arithmetic concerns QR only: The basis computations are still performed exactly (with integer arithmetic).

Quick history of fp-LLL

- 1982, Odlyzko: coded an fp-LLL, to break knapsack cryptosystems.
- 1988, Schnorr: first provable fp-LLL.
- 1991, Schnorr-Euchner: heuristics for practical fp-LLL.
- Mid 90's: Implemented in NTL by Shoup and in Magma by Steel.
- 2005, Nguyen-S.: L², a (much) more efficient provable fp-LLL.
- 2009, Morel-S.-Villard: H-LLL, requiring lower precision.
- $\bullet\,$ 2011, Novocin-S.-Villard: \widetilde{L}^1 , with quasi-linear time complexity.

Quick history of fp-LLL

- 1982, Odlyzko: coded an fp-LLL, to break knapsack cryptosystems.
- 1988, Schnorr: first provable fp-LLL.
- 1991, Schnorr-Euchner: heuristics for practical fp-LLL.
- Mid 90's: Implemented in NTL by Shoup and in Magma by Steel.
- 2005, Nguyen-S.: L², a (much) more efficient provable fp-LLL.
- 2009, Morel-S.-Villard: H-LLL, requiring lower precision.
- $\bullet\,$ 2011, Novocin-S.-Villard: \widetilde{L}^1 , with quasi-linear time complexity.

	Kaltofen'82	Schnorr'88	L^2/H -LLL	\widetilde{L}^1
complexity	$n^5\beta^2(n+\beta)$	$n^4\beta(n+\beta)^2$	$n^5\beta(n+\beta)$	$n^{5+arepsilon}eta^{1+arepsilon}$
precision	neta	$n + \beta$	1.6 <i>n</i> /0.8 <i>n</i>	

Using fp arithmetic does not necessarily imply that the output is incorrect, or that the algorithm is heuristic!

- We keep the input lattice, as bases are manipulated exactly.
- The basis operations are given by the approximate fp QR.
- We can prove that we make progress by using:
 - The axioms of fp arithmetic for (+, ×, /, √).
 - Rigorous backward stability of Householder's QR algorithm.
 - Rigorous sensitivity analyses of R under small perturbations.

But still, fp-LLL does not quite compute LLL-reduced bases...

Using fp arithmetic does not necessarily imply that the output is incorrect, or that the algorithm is heuristic!

- We keep the input lattice, as bases are manipulated exactly.
- The basis operations are given by the approximate fp QR.
- We can prove that we make progress by using:
 - The axioms of fp arithmetic for $(+, \times, /, \sqrt{})$.
 - Rigorous backward stability of Householder's QR algorithm.
 - Rigorous sensitivity analyses of *R* under small perturbations.

But still, fp-LLL does not quite compute LLL-reduced bases...

Using fp arithmetic does not necessarily imply that the output is incorrect, or that the algorithm is heuristic!

- We keep the input lattice, as bases are manipulated exactly.
- The basis operations are given by the approximate fp QR.
- We can prove that we make progress by using:
 - The axioms of fp arithmetic for $(+, \times, /, \sqrt{})$.
 - Rigorous backward stability of Householder's QR algorithm.
 - Rigorous sensitivity analyses of R under small perturbations.

But still, fp-LLL does not quite compute LLL-reduced bases...

Using fp arithmetic does not necessarily imply that the output is incorrect, or that the algorithm is heuristic!

- We keep the input lattice, as bases are manipulated exactly.
- The basis operations are given by the approximate fp QR.
- We can prove that we make progress by using:
 - The axioms of fp arithmetic for $(+, \times, /, \sqrt{})$.
 - Rigorous backward stability of Householder's QR algorithm.
 - Rigorous sensitivity analyses of R under small perturbations.
- But still, fp-LLL does not quite compute LLL-reduced bases...

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \leq n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

- $\forall i, j: |r_{i,j}| \le r_{i,i}/2$ [size-reduction]
- $\forall i: \ \delta \cdot r_{i,i}^2 \leq r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \leq n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if:

- $\forall i, j: |r_{i,j}| \le r_{i,i}/2$ [size-reduction]
- $\forall i: \delta \cdot r_{i,i}^2 \leq r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

We can't decide reducedness by looking at the (53) top-most bits:

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \le n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if: • $\forall i, j : |r_{i,j}| \le r_{i,i}/2$ [size-reduction] • $\forall i : \delta \cdot r_{i,i}^2 \le r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

We can't decide reducedness by looking at the (53) top-most bits:

Damien Stehlé

Accelerating lattice reduction algorithms with floating-point arithmetic 20/09/2011 16/30

Let $\delta \in (1/4, 1)$. A basis $B = (\mathbf{b}_i)_{i \le n} \in \mathbb{R}^{n \times n}$ with QR-factorisation B = QR is said LLL-reduced if: • $\forall i, j: |r_{i,j}| \le r_{i,i}/2$ [size-reduction] • $\forall i: \delta \cdot r_{i,i}^2 \le r_{i,i+1}^2 + r_{i+1,i+1}^2$ [Lovász' condition].

We can't decide reducedness by looking at the (53) top-most bits:

Damien Stehlé

Accelerating lattice reduction algorithms with floating-point arithmetic 20/09/2011 16/30

Sensitivity of the R-factor

- Take $B \in \mathbb{R}^{n \times n}$ non-singular, with B = QR.
- Apply a columnwise perturbation ΔB , i.e., $\max_i \frac{\|\Delta \mathbf{b}_i\|}{\|\mathbf{b}_i\|} \leq \varepsilon$.
- That's the perturbation provided by the backward stability analysis of Householder's algorithm, for $\varepsilon \approx 2^{-p}$.
- If ε is very small, then $B + \Delta B$ is non-singular and:

$$B + \Delta B = (Q + \Delta Q)(R + \Delta R).$$

• How large can ΔR be?

Sensitivity of the R-factor

- Take $B \in \mathbb{R}^{n \times n}$ non-singular, with B = QR.
- Apply a columnwise perturbation ΔB , i.e., $\max_i \frac{\|\Delta \mathbf{b}_i\|}{\|\mathbf{b}_i\|} \leq \varepsilon$.
- That's the perturbation provided by the backward stability analysis of Householder's algorithm, for $\varepsilon \approx 2^{-p}$.
- If ε is very small, then $B + \Delta B$ is non-singular and:

$$B + \Delta B = (Q + \Delta Q)(R + \Delta R).$$

• How large can ΔR be?

Let $\operatorname{cond}(R) = |||R||R^{-1}|||$. If $\operatorname{cond}(R) \cdot \varepsilon \lesssim 1$, then: $B + \Delta B$ is non-singular and $\max \frac{||\Delta r_i||}{||r_i||} \lesssim \operatorname{cond}(R) \cdot \varepsilon$. Furthermore, if B is LLL-reduced, then $\operatorname{cond}(R) = 2^{\mathcal{O}(n)}$.

Damien Stehlé

Fixing the LLL-reduction

Accelerating lattice reduction algorithms with floating-point arithmetic

18/30

- Reminders on Euclidean lattices.
- **2** Using floating-point arithmetic within lattice algorithms.
- **O The fplll library.**

http://perso.ens-lyon.fr/xavier.pujol/fplll/

- A C++ library, under Lesser GPL v2.1.
- Created in 2005 (current version: 3.1).
- Former developers: Cadé, S.. Current developer: Pujol.
- Fairly compact: pprox 10,000 lines.
- Used by SAGE, MAGMA, Pari GP & Mathemagix.
- Main competitor: Shoup's NTL.

http://perso.ens-lyon.fr/xavier.pujol/fplll/

- A C++ library, under Lesser GPL v2.1.
- Created in 2005 (current version: 3.1).
- Former developers: Cadé, S.. Current developer: Pujol.
- Fairly compact: $\approx 10,000$ lines.
- Used by SAGE, MAGMA, Pari GP & Mathemagix.
- Main competitor: Shoup's NTL.

http://perso.ens-lyon.fr/xavier.pujol/fplll/

- A C++ library, under Lesser GPL v2.1.
- Created in 2005 (current version: 3.1).
- Former developers: Cadé, S.. Current developer: Pujol.
- Fairly compact: $\approx 10,000$ lines.
- Used by SAGE, MAGMA, Pari GP & Mathemagix.
- Main competitor: Shoup's NTL.

http://perso.ens-lyon.fr/xavier.pujol/fplll/

- A C++ library, under Lesser GPL v2.1.
- Created in 2005 (current version: 3.1).
- Former developers: Cadé, S.. Current developer: Pujol.
- Fairly compact: $\approx 10,000$ lines.
- Used by SAGE, MAGMA, Pari GP & Mathemagix.
- Main competitor: Shoup's NTL.

Goal: show that our theoretical algorithms are relevant in practice.

What does it do?

- Contains efficient and guaranteed implementations of lattice algorithms, (most) often relying on fp arithmetic:
 - LLL reduction [Nguyen-S.'05].
 - WKZ reduction, SVP & CVP solvers [Pujol-S.'08].
 - And soon, BKZ reduction.
- Contains heuristic variants as well.
- Contains an automatic wrapper that:
 - Tries the fastest variants first.
 - Detects when things go wrong.
 - Eventually switches to more rigorous variants.

What does it do?

- Contains efficient and guaranteed implementations of lattice algorithms, (most) often relying on fp arithmetic:
 - LLL reduction [Nguyen-S.'05].
 - WKZ reduction, SVP & CVP solvers [Pujol-S.'08].
 - And soon, BKZ reduction.
- Contains heuristic variants as well.
- Contains an automatic wrapper that:
 - Tries the fastest variants first.
 - ② Detects when things go wrong
 - Eventually switches to more rigorous variants.

What does it do?

- Contains efficient and guaranteed implementations of lattice algorithms, (most) often relying on fp arithmetic:
 - LLL reduction [Nguyen-S.'05].
 - WKZ reduction, SVP & CVP solvers [Pujol-S.'08].
 - And soon, BKZ reduction.
- Contains heuristic variants as well.
- Contains an automatic wrapper that:
 - Tries the fastest variants first.
 - 2 Detects when things go wrong.
 - Seventually switches to more rigorous variants.

What does it use?

Integer arithmetic:

- long ints arithmetic is input basis entries are small.
- GNU MP's mpz's.

Floating-point arithmetic:

- doubles,
- DPEs: exponent stored externally on an int,
- External exponent shared for a whole vector,
- MPFR.

GSO/QR numerical algorithm:

- Cholesky's algorithm, starting from approximate/exact $B^T B$.
- Sub-optimal choice for numerical stability. .
- but relatively low number of arithmetic operations.

What does it use?

Integer arithmetic:

- long ints arithmetic is input basis entries are small.
- GNU MP's mpz's.

Floating-point arithmetic:

- doubles,
- DPEs: exponent stored externally on an int,
- External exponent shared for a whole vector,
- MPFR.

GSO/QR numerical algorithm:

- Cholesky's algorithm, starting from approximate/exact $B^T B$.
- Sub-optimal choice for numerical stability. .
- but relatively low number of arithmetic operations.

What does it use?

Integer arithmetic:

- long ints arithmetic is input basis entries are small.
- GNU MP's mpz's.

Floating-point arithmetic:

- doubles,
- DPEs: exponent stored externally on an int,
- External exponent shared for a whole vector,
- MPFR.

GSO/QR numerical algorithm:

- Cholesky's algorithm, starting from approximate/exact $B^T B$.
- Sub-optimal choice for numerical stability...
- but relatively low number of arithmetic operations.

Is the rational LLL really that bad?

After all, the complexity bounds do not differ that much:

$$n^5\beta^2(n+\beta)$$
 versus $n^5\beta(n+\beta)$.

Is the rational LLL really that bad?

After all, the complexity bounds do not differ that much:

$$n^5\beta^2(n+\beta)$$
 versus $n^5\beta(n+\beta)$.

Using MAGMA V2.16:

```
> n:=25; beta:=2000;
> B:=RMatrixSpace(Integers(),n,n)!0;
> for i:=1 to n do
> B[i][i]:=1;
> B[i][1]:=RandomBits(beta);
> end for;
> time _:=LLL(B:Method:=''Integral'');
Time: 11.700
> time _:=LLL(B);
Time: 0.240
```

Correctness and termination

After all, we can check that $\frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$ is small. But:

- The execution may loop forever.
- It may be hard to detect for the user.
- Correctness and termination tend to be intertwinned.
- We found a basis with n = 55 and $\beta \approx 100$ that makes NTL's LLL_FP loop forever.

Correctness and termination

After all, we can check that $\frac{\|\mathbf{b}_1\|}{(\det L)^{1/n}}$ is small. But:

- The execution may loop forever.
- It may be hard to detect for the user.
- Correctness and termination tend to be intertwinned.
- We found a 55-dimensional lattice with $\beta\approx$ 100 that makes NTL's LLL_FP loop forever.

```
[...]
unexpected behaviour -> exit
=== LLL method end : Size-reduction failed. (kappa=54) ===
=== LLL method : proved<mpz_t, double> ===
Setting precision at 53 bits.
Entering fpLLL:
[...]
====== LLL method end : success ======
```

A hierarchy of variants (slightly outdated)

Current limitations

- The bottleneck used to stem from β .
- ullet Large dimensions (\gtrsim 150) were seldom encountered.
- Now it's quite fast up to n ≈ 165: that's when double precision starts not being sufficient for "generic" bases.
- Then it switches to MPFR, which makes it extremely slow.
- We have ways to push this limit: $n \approx 330$ using H-LLL, maybe $n \approx 1,000$ using new developments.
- Then the complexity with respect to *n* starts to kick in.

Current limitations

- The bottleneck used to stem from β .
- ullet Large dimensions (\gtrsim 150) were seldom encountered.
- Now it's quite fast up to n ≈ 165: that's when double precision starts not being sufficient for "generic" bases.
- Then it switches to MPFR, which makes it extremely slow.
- We have ways to push this limit: $n \approx 330$ using H-LLL, maybe $n \approx 1,000$ using new developments.
- Then the complexity with respect to *n* starts to kick in.

Current limitations

- The bottleneck used to stem from β .
- ullet Large dimensions (\gtrsim 150) were seldom encountered.
- Now it's quite fast up to n ≈ 165: that's when double precision starts not being sufficient for "generic" bases.
- Then it switches to MPFR, which makes it extremely slow.
- We have ways to push this limit: $n \approx 330$ using H-LLL, maybe $n \approx 1,000$ using new developments.
- Then the complexity with respect to *n* starts to kick in.

Conclusion

- A rigorous use of fp arithmetic for an algebraic computation.
- Why using a hybrid approach? Because we can, and it gives the best complexity bounds.
- Rigorous implementation based on a wrapper that automatically chooses fast/rigorous variants.
- fplll is very often the fastest, and the only one providing correctness and termination guarantees.
Projects

Theoretical projects:

- Combine the algorithmic improvements wrt β with those wrt n [Schönhage'84, Koy-Schnorr'01].
- Beat the $\mathcal{O}(n)$ fp precision barrier.
- Get faster algorithms, possibly with bit-complexity $\mathcal{O}(n^{\omega+\varepsilon}\beta^{1+\varepsilon})$, with $\omega = 2.376...$

And keep up with the algorithmic improvements!!!

- H-LLL [Morel-S-Villard'09] is still not implemented.
- BKZ is just being implemented.
- [Novocin-S-Villard'11] needs cleaning before implementation.

Projects

Theoretical projects:

- Combine the algorithmic improvements wrt β with those wrt n [Schönhage'84, Koy-Schnorr'01].
- Beat the $\mathcal{O}(n)$ fp precision barrier.
- Get faster algorithms, possibly with bit-complexity

 $\mathcal{O}(n^{\omega+\varepsilon}\beta^{1+\varepsilon}), \text{ with } \omega = 2.376\ldots$

And keep up with the algorithmic improvements!!!

- H-LLL [Morel-S-Villard'09] is still not implemented.
- BKZ is just being implemented.
- [Novocin-S-Villard'11] needs cleaning before implementation.