CADO-NFS, a Number Field Sieve implementation

```
P. Gaudry<sup>1</sup>, A. Kruppa<sup>1</sup>, F. Morain<sup>2</sup>,
L. Muller<sup>1</sup>, E. Thomé<sup>1</sup>, P. Zimmermann<sup>1</sup>

<sup>1</sup> CARAMEL/INRIA/LORIA; <sup>2</sup> TANC/INRIA/LIX
```

Sep 23rd, 2011

Plan

Introduction

Overview of NFS

Polynomial selection

Sieving

Linear algebra

Square roof

Conclusion

Motivations

Integer factorization $(N = pq \rightarrow \text{find } p, q)$ is a hard problem.

- Pre-1980's: a stumbling block in mathematical computations, and a challenging problem. Some significant advances in the 1970's.
- 1978-present: IF has attracted considerable attention because of its relevance for cryptography through the RSA cryptosystem.

CADO-NFS: an implementation of NFS

The fastest integer factoring algorithm is the Number Field Sieve.

- Very complicated algorithm. Embarks lots of number theory.
 (much more involved than, e.g., the ECM factoring algorithm)
- Very few available implementations. State of the art is at best bits and pieces from here and there.

CADO project. Write our own code. Joint effort, started in 2007.

- Actively developed. Playground for new ideas.
- Certainly beatable, but contains nice algorithms.
- No refrain to reorganizing the code to (changing) taste every so often.

 $\rm CADO\textsc{-}NFS$ is LGPL, and written (almost) entirely in C. To date, $\sim 120~\rm kLOC.$

Objectives for an NFS program

An NFS program like CADO-NFS can be used for various purposes.

- Numbers which explore the limitations of the current code.
 Do growing sizes, add optimizations.
 Ongoing effort. Currently doing 700 bits.
- Record-size numbers. CADO-NFS can't factor rsa768, but participating to rsa768 taught us a lot.

Note: CADO-NFS is clearly not an integrated factoring machinery. CADO-NFS does not include ECM, QS, ...

- No interaction with a user.
- Interface: a collection of programs driven by a main script.

Record sizes: crypto in sight

The feasibility limit explored by NFSrecords is used to determine key sizes for RSA.

- SSL/TLS. CA root certificates are installed by default in browsers.
 - Linux laptop, 2005: 1024b (50%), 2048b (48%), 4096b (2%);
 - Linux laptop, 2009: 1024b (31%), 2048b (58%), 4096b (10%).
- EMV credit cards (a.k.a. chip and pin).

Most chip public keys are 960b. Some 1024b (until end of 2009, some had a 896b key).

Factoring experiments: decision-driving data for setting key sizes.

Plan

Introduction

Overview of NFS

Polynomial selection

Sieving

Linear algebra

Square roo

Conclusion

The GNFS setup

For factoring "general" N, GNFS uses:

- a number field $K = \mathbb{Q}(\alpha)$ defined by $f(\alpha) = 0$, for f irreducible over \mathbb{Q} and deg f = d;
- Another irreducible polynomial g such that f and g have a common root m mod N (example: g = x m).

g defines the rational side, f defines the algebraic side.

Choosing f and g is referred to as the polynomial selection step.

General plan: Obtain relations, and combine them to obtain:

$$x^2 \equiv y^2 \mod N$$
.

Relations in NFS

Take for example a - bx in $\mathbb{Z}[x]$. Suppose for a moment that:

- ullet the integer a-bm is smooth: product of factor base primes;
- the algebraic integer $a b\alpha$ is also a product.

Then we have an multiplicative relation in $\mathbb{Z}/N\mathbb{Z}$. We can hope to combine many such relations to form a congruence of squares.

$$R = (a_1 - b_1 m) \times \cdots \times (a_k - b_k m) = \square,$$

$$A = (a_1 - b_1 \alpha) \times \cdots \times (a_k - b_k \alpha) = \square,$$

$$\varphi^{(1)}(R) \equiv \varphi^{(2)}(R) \mod N.$$

Recognizing when $a - b\alpha$ factors

Major obstruction: $\mathbb{Z}[\alpha]$ not a UFD. "Factoring" $(a-b\alpha)$ won't work too well.

The proper object to look at is the factorization of the principal ideal generated by $(a - b\alpha)$ in the ring of integers of K.

- Some obstructions (ramifications, who's the maximal order) must be worked around.
- Essentially, we want the integer

$$\operatorname{Norm}_{K/\mathbb{Q}}(a-b\alpha) = \operatorname{Res}(a-bx,f) = b^d f(a/b) = F(a,b)$$

to be smooth. Nothing terribly complicated.

Complexity of NFS

For factoring an integer N, GNFS takes time:

$$L_{\mathit{N}}[1/3, (64/9)^{1/3}] = \exp\left((1+\mathit{o}(1))(64/9)^{1/3}(\log\mathit{N})^{1/3}(\log\log\mathit{N})^{2/3}\right).$$

This is sub-exponential.

Note: some special numbers allow for a faster variant NFS, with complexity

$$L_{\mathit{N}}[1/3, (32/9)^{1/3}] = \exp\left((1+\mathit{o}(1))(32/9)^{1/3}(\log\mathit{N})^{1/3}(\log\log\mathit{N})^{2/3}\right).$$

NFS: no panic

NFS might not be the simplest algorithm on earth, but:

- obstructions have been dealt with already long ago. See literature.
- the bottom line is simple: everything boils down to assembly/C/MPI.

Polynomial selection: find f, g;

Sieving: find many a, b s.t. $F(a, b) = b^d f(a/b)$ and G(a, b) smooth.

Linear algebra: combine a, b pairs to get a congruence of squares. $(\Rightarrow \text{ solve a large sparse linear system over } \mathbb{F}_2.)$

 $(\Rightarrow$ solve a large sparse illear system over \mathbb{F}_2 .

Square root: complete the factorization.

Recent progresses

Since RSA-155 (512 bits) in 1999, many improvements.

- Much better polynomial selection (Kleinjung, 2003, 2006).
- Very efficient sieving code (Franke, Kleinjung, 2003–).
- Very efficient cofactorization code (Kleinjung, Kruppa).

More recent state of the art, notably for linear algebra:

- Use block Wiedemann algorithm (BW), at separate locations.
- Use computer grids idle time to do linear algebra.
- Use sequences of unbalanced length in BW.

Plan

Introduction

Overview of NES

Polynomial selection

Sieving

Linear algebra

Square root

Conclusion

Polynomial selection

Asymptotic analysis of NFS gives formulae for:

- asymptotic optimal value for deg f (for an n-bit number).
- asymptotic optimal value for the coefficient sizes.

Trivial "base-m" approach:

- Choose the degree d. Choose an integer $m \approx N^{1/(d+1)}$;
- Write *N* in base *m*: $N = f_d m^d + f_{d-1} m^{d-1} + \cdots + f_0$.
- Pick $f = f_d X^d + \cdots + f_0$ and g = X m.

We have an immense freedom in the choice of $m \Rightarrow$ can do better.

Polynomial selection algorithms

Algorithms aim at polynomial pairs (f,g) s.t. $F(a,b) = b^d f(a/b)$:

- is comparatively small over the sieving range.
- is often smooth (f with many roots mod small p).

Several relevant algorithms:

- Kleinjung (2006): handle an immense amount of possible polynomials, explore promising ones.
- Murphy (1999): rotation and root sieve: $(f,g) \rightsquigarrow (f + \lambda g,g)$.
- Kleinjung (2008): modification of the 2006 algorithm.

CADO-NFS has a polyselect program implementing this.

- polynomial root finding mod small p;
- knapsack-like problem solving;
- sieving for good λ ; could use GPUs.

Plan

Introduction

Overview of NFS

Polynomial selection

Sieving

Linear algebra

Square roof

Conclusion

Sieving: a very old tool

In order to find (a, b) pairs for which F(a, b) is smooth:

• For all small primes p (or prime powers);

Sieving: a very old tool

In order to find (a, b) pairs for which F(a, b) is smooth:

- For all small primes p (or prime powers);
- for all roots r of $f \mod p$, pick (a_0, b_0) s.t. $a_0 \equiv rb_0 \mod p$;

Sieving: a very old tool

In order to find (a, b) pairs for which F(a, b) is smooth:

- For all small primes p (or prime powers);
- for all roots r of $f \mod p$, pick (a_0, b_0) s.t. $a_0 \equiv rb_0 \mod p$;
- for all (u, v), mark $(a_0 + pu, b_0 + pv)$ as being divisible by p.

Keep (a, b) pairs which have been marked most.

Do this on both sides (f and g). Deciding in which order in subtle.

Note: NFS computation time is mostly spent on sieving.

Sieving: describing work

Lemma. For coprime (a, b),

- $\nu_p(F(a,b)) \ge 1$ iff (a:b) is a zero of F in $\mathbb{P}^1(\mathbb{F}_p)$. Example: $f = 3x^2 + x + 1$. $F(a,b) = 3a^2 + ab + b^2 \equiv 0 \mod 3$ if either:
 - \bullet (a:b)=(2:1) in $\mathbb{P}^1(\mathbb{F}_3)$: IOW, $a-2b\equiv 0\mod 3$.
 - (a:b) = (1:0) in $\mathbb{P}^1(\mathbb{F}_3)$: IOW, $b \equiv 0 \mod 3$: "projective".
- More generally, (a, b)'s such that $\nu_p(F(a, b)) \ge k$ can be described as a set of points in $\mathbb{P}^1(\mathbb{Z}/p^\ell\mathbb{Z})$.

Starting point of sieving: compute the factor bases (both sides)

- Set of (p^{ℓ}, r) , where $r < 2p^{\ell}$ encodes a point in $\mathbb{P}^1(\mathbb{Z}/p^{\ell}\mathbb{Z})$.
- Algebraic side harder than rational, but done offline anyway.
- ▶ root finding mod p;
- ▶ handle projective roots;
- ▶ handle powers. Some guaranteed headaches.

Typical problems with sieving

There are several practical shortcomings.

- The (a, b) space to be explored is large, but predicting in advance the yield for a range of (a, b) pairs is hard;
- The yield drops as (a, b) grow;
- ⇒ diminishing returns.

Lattice sieving to the rescue.

Old idea (1993), but superiority demonstrated only after 2000.

Lattice sieving

"special- \mathfrak{q} ": prime ideal $\mathfrak{q} = \langle \mathbf{q}, \alpha - \mathbf{r} \rangle$.

How do we describe the set of pairs (a, b) such that $\mathfrak{q} \mid (a - b\alpha)$? Answer: points in the lattice $\mathcal{L} = \langle e_0 = (r, 1), e_1 = (q, 0) \rangle$.

We would like to examine e.g. 2^{31} of these points. Which ones ?

- ▶ Bad idea: $\{(a,b) = ie_0 + je_1\}$ for $(i,j) \in [-2^{16}, 2^{16}] \times [0, 2^{15}]$. a gets then too large: $\approx q \times 2^{15}$.
- ▶ Better: reduced basis (e'_0, e'_1) and (i, j) in the same range. If the reduced basis is nice, we expect $a \approx b \approx 2^{16} \sqrt{q}$.

Lattice sieving

"special-q": prime ideal $\mathfrak{q} = \langle q, \alpha - r \rangle$.

How do we describe the set of pairs (a,b) such that $\mathfrak{q} \mid (a-b\alpha)$? Answer: points in the lattice $\mathcal{L} = \langle e_0 = (r,1), \ e_1 = (q,0) \rangle$.

We would like to examine e.g. 2^{31} of these points. Which ones ?

- ▶ Bad idea: $\{(a,b) = ie_0 + je_1\}$ for $(i,j) \in [-2^{16}, 2^{16}] \times [0, 2^{15}]$. a gets then too large: $\approx q \times 2^{15}$.
- ▶ Better: reduced basis (e'_0, e'_1) and (i, j) in the same range. If the reduced basis is nice, we expect $a \approx b \approx 2^{16} \sqrt{q}$.

Benefits

- A factor of q is forced in the norm;
- ullet for q's of comparable size, we have comparable yields ;
- immense choice of special-q's;
- smaller sieve areas.

Lattice sieving: how do we sieve?

Given a special-q and
$$\begin{pmatrix} e_0' \\ e_1' \end{pmatrix} = \begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \end{pmatrix}$$
, we consider the lattice

$$\mathcal{L}_{\mathfrak{q}} = \left\{ (a, b) = ie'_0 + je'_1 \right\}.$$

All work is done on the (i,j) plane. A rectangle $\mathcal{R}_{(i,j)}$ is fixed.

The workplan for sieving for this special q is:

- Describe locations to sieve in the (i, j) plane.
- Sieve "small" factor base primes.
- Sieve "large" factor base primes.
- Do this for both sides.
- Locations which have been marked most need to be factored.

Sieve locations in the (i, j) plane.

Let p be a prime (power) coprime to q. We have a homography:

$$h_{\mathfrak{q}}: \left\{ \begin{array}{ccc} \mathbb{P}^{1}(\mathbb{Z}/p\mathbb{Z}) & \to & \mathbb{P}^{1}(\mathbb{Z}/p\mathbb{Z}), \\ (i:j) & \mapsto & (a:b) = (ia_{0} + ja_{1}:ib_{0} + jb_{1}). \end{array} \right.$$

Starting from a description S_p of the (a, b) sieve locations:

$$\{(i,j), p \mid F(a,b)\} = \{(i,j), (a:b) \in S_p \subset \mathbb{P}^1(\mathbb{Z}/p\mathbb{Z})\},$$

= \{(i,j), h_q(i:j) \in S_p\},
= \{(i,j), (i:j) \in h_q^{-1} S_p\}.

- This change of basis must be redone for each q.
- relatively cheap because independent of the sieve area size.
- ▶ Need to precompute preinverses of factor base primes.

Fine points of sieving

For a given \mathfrak{q} , explore some $\mathcal{R}_{(i,j)}$ of size e.g. 2^{31} .

- Divide into areas matching L1 cache size (64kb typically), to be processed one by one.
- Small primes hit often: once per row.
- Larger primes hit rarely. Rather maintain a "schedule" list to circumvent cache misses: "bucket sieving".
- Use multithreading.

CADO-NFS implements this in las.

- ▶ Hot spots in assembly; Use vector instructions when relevant;
- Optimize some data structures to reduce memory footprint;
- Strive to eliminate badly predictable branches;
- POSIX threads;
- ▶ Factoring good (a, b)'s: Use $p \pm 1$ and special-purpose ECM.

Plan

Introduction

Overview of NFS

Polynomial selection

Sieving

Linear algebra

Square roo

Conclusion

Fast forward

The output of the sieve process is a set of relations.

These undergo:

- Filtering: making a small relation set from a large one;
- After filtering, linear system solving.

Algorithmically, nothing very new in filtering since Cavallar (2000). Implementation in ${\it Cado-NFS}$:

- Hash tables all over the place;
- Minimum spanning trees to help decision;
- ▶ Has supported MPI distribution at some point;

Does the job so far.

Linear algebra

Must combine relations so that they consist of only squares.

This rewrites as a linear system. (everything reduces to lin. alg. !)

- matrix M: a relation appears in each row. Coefficients are multiplicities of prime factors (and ideals). Most are zero.
- A vector v such that

$$vM = 0 \mod 2$$

indicates which relations to combine in order to obtain only squares (even multiplicities).

Equivalently, we rephrase this as a linear system Mv = 0 (transposing M).

Note: linear algebra mod 2 differs much from linear algebra over \mathbb{C} .

\mathbb{F}_2 is exact, and positive characteristic

Linear algebra

We have an $N \times N$ matrix M. We want to solve Mw = 0. The matrix M is large, (very) sparse, and defined over \mathbb{F}_2 .

Because of sparsity, we want a black box algorithm.

$$v \longrightarrow M \times v$$

There are several sparse linear algebra algorithms suitable for \mathbb{F}_2 :

- Lanczos ;
- Wiedemann ; others.

These early suggestions are unsuitable. Bit arithmetic: slow. Also, failure probability $1/\#\mathbb{F}_2=1/2$ is not so tempting...

Block algorithms

Block algorithms apply the black box to e.g. n=64 vectors at a time. (n is prescribed by the hardware)

- Block Lanczos (BL). $\frac{2N}{n-0.76}$ black box applications;
- Block Wiedemann (BW). $\frac{3N}{nn'}$, n' times (n' small).

BL is appealing if one has a large cluster.

BW is preferred since it offers distribution opportunities.

Block Wiedemann: workplan

- Initial setup. Choose starting blocks of vectors x and y.
- Sequence computation. Want *L* first terms of the sequence:

$$a_i = x^T M^k y$$
.

- Computing one term after another, this boils down to our black box $v \mapsto Mv$.
- This computation can be split into several independent parts (which all know *M*).
- Compute some sort of minimal polynomial.
- Build solution as:

$$v = \sum_{k=0}^{\deg f} M^k y f_k.$$

- Again, this uses the black box.
- \bullet Can be split into many independent parts (which all know M).

Linear algebra: size matters

The matrix M itself is soon out of reach for core storage.

- 2005: kilobit SNFS: 64M rows/cols, 10G non-zero coeffs. About 30GB.
- 2010: 768b GNFS: 192M rows/cols, 27G non-zero coeffs. About 75GB.

Computing $M \times v$ is also a lot of work. Try to use many processors if possible.

This is a classical HPC concern.

- Split the matrix into equal parts.
- Exploit high-bandwith channels: shared memory, infiniband network.

Features of the CADO-NFS BW code

CADO-NFS has a complete BW implementation.

Sequence computation:

- ► POSIX threads;
- ▶ MPI implementation agnostic. Some optimized collectives;
- ▶ Some kind of "sparse binary BLAS" used. Assembly;
- ► (Stem of) capability to switch to other base field;
- ▶ Mostly C, some C++. Wrapper script in Perl.

Minimal polynomial computation using a quasi-linear algorithm.

- recursive structure;
- \blacktriangleright arithmetic on matrices of polynomials over \mathbb{F}_2 .
- very old code, needs rework.

Plan

Introduction

Overview of NFS

Polynomial selection

Sieving

Linear algebra

Square root

Conclusion

The square root step

Our congruence of squares actually comes as:

$$(a_1-b_1m)\times\cdots\times(a_k-b_km)\equiv\phi((a_1-b_1\alpha)\times\cdots\times(a_k-b_k\alpha))\mod N.$$

- Both sides are known to factor with even multiplicities: they are squares.
- BUT computing the square root is in fact non trivial (esp. on algebraic side).

CADO-NFS implements quasi-linear algorithms for this

- Newton lifting.
- Arithmetic modulo fixed degree polynomials.
- Suitable for current records.
- Alternative algorithm (waives a number theoretic assumption):
 - ► Explicit CRT.
 - Can be distributed with MPI.

There exists a more advanced square root algorithm for this step (Montgomery), but it needs more software support.

Plan

Introduction

Overview of NFS

Polynomial selection

Sieving

Linear algebra

Square roof

Conclusion

Conclusion and further work

Many points would be interesting to improve.

- Polyselect with GPUs (but msieve does this already).
- Lattice siever needs cleanup, and some obvious improvements.
- Filtering currently can't handle record sizes.
- Linear algebra sparse BLAS can be improved.
- Linear algebra minimal polynomial step must be reworked.
- The whole chain could be adapted to discrete log computation.