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Examples of Set-Estimation Problems
Robotics

Stewart-Gough platform, archetypal parallel robot used, e.g.,
in flight simulators.
Given the (fixed) lengths of the six limbs and geometry, find all
possible configurations of mobile plate wrt base.
Benchmark problem in computer algebra.
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Examples of Set-Estimation Problems
Robust control
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For given values of parameters c1 and c2 of PI controller, find
all values of process parameter vector

[
p1 p2 p3

]
such

that behavior of controlled system is acceptable. Most basic
requirement is stability.
For given set of possible values for process parameter vector,
find a tuning of controller parameters that guarantees
acceptable behavior (or prove that none exists).
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Examples of Set-Estimation Problems
Guaranteed parameter estimation

System

Model
( )M p

y t( )

y tm( , )p

Find all values of parameter vector p such that error between
system output and model output belongs to some acceptable
set.
Find all values of p that are optimal in some statistical sense.
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Origins of Interval Computations

Used by
Archimedes, 3rd century BC to enclose
high-school physicists to assess errors...

Systematic use in numerical analysis and on computers often
attributed to Ramon Moore (circa 1960), but many precursors,
including M. Warmus (1956) and T. Sunaga (1958).

Limited impact outside inner circle until beginning of the 90s for
various reasons, including implementation issues.

Things are improving as we shall see.
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Interval Arithmetics

Basic arithmetic operations easily extend to intervals:

[x] ◦ [y ] = {x ◦ y |x ∈ [x] and y ∈ [y ]}

For instance
[x]+ [y ] =

[
x + y ,x + y

]
,

[x]− [y ] =
[
x − y ,x − y

]
.

Note that
[x]− [x] is not equal to zero! Try to avoid multi-occurences of
variables...
results computed using bounds of interval operands (intervals
described by pairs of real numbers, just as complex numbers),
division tricky when zero belongs to denominator interval.
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Inclusion functions

Inclusion function [f ] (·) of f (·) satisfies

∀ [x]⊂ R, f ([x])⊂ [f ] ([x]) .

It is
minimal if ⊂ can be replaced by =,
convergent if width ([x])→ 0 ⇒ width ([f ] ([x]))→ 0

Easy to build for monotone functions, e.g.,

exp([x]) = [exp(x) ,exp(x)] .

(Simple) algorithms available for sin(·), cos(·), etc.

Inclusion functions also available for solutions of nonlinear ODEs,
see Berz – Makino talk.
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Examples of Natural Inclusion Functions

Natural inclusion functions: replace each variable and operator by
its interval counterpart in formal expression.

Consider these four formal expressions of the same function

f1(x) = x(x +1), f3(x) = x2 + x ,
f2(x) = x × x + x , f4(x) = (x + 1

2 )
2− 1

4 .

Evaluate their natural inclusion functions for [x] = [−1,1].

9/54



Examples of Set-Estimation Problems
Interval Tools for Set Estimation

Returning to Examples
Conclusions

Computing with intervals
Solving systems of nonlinear equations
Inverting relations between sets
Optimizing nonconvex cost functions
Robust tuning

Examples of Natural Inclusion Functions

 

 

 

 

  

  

     
 

Only [f4] is minimal (x appears only once).
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Another Useful Type of Inclusion Function

If f is differentiable over [x], mean-value theorem states that
∀x ∈ [x], ∃ ∈ [x] such that

f (x) = f (m)+ f ′( ) · (x −m),

with m the center of [x]. Then

f (x) ∈ f (m)+ f ′([x]) · (x −m)

and
f ([x])⊆ f (m)+

[
f ′
]
([x]) · ([x]−m).

Hence the centred form

[f ]c ([x]) = f (m)+
[
f ′
]
([x]) · ([x]−m).
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Which Inclusion Function To Use?

Compare the natural and centred inclusion functions for

f (x) = x2 exp(x)− x exp
(
x2) .

Best inclusion function depends on width of interval argument:

[x] f ([x]) [f ] ([x]) [f ]c ([x])
[0.5,1.5] [−4.148,0] [−13.82,9.44] [−25.07,25.07]
[0.9,1.1] [−0.05380,0] [−1.697,1.612] [−0.5050,0.5050]
[0.99,1.01] [−0.0004192,0] [−0.1636,0.1628] [−0.0047,0.0047]

Intersecting results provided by several inclusion functions may
provide a more accurate result than any of them separately.
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Computing with Interval Vectors and Functions

An interval vector (or box) is a Cartesian product of scalar intervals

[x] = [x1]× · · · [xn] .

Interval computation extends easily to boxes, as well as notion of
inclusion function.
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Solving Systems of Nonlinear Equations

System writen as
f(x) = 0.

We assume that
there are as many equations are there are unknowns
(dim f(x) = dimx = n),
f is continuously differentiable.

We want all solutions in a given box [x]0.

The approach is an interval variant of the Newton method.
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Interval Newton Method

Mean-value theorem implies that ∀x ∈ [x], ∃ ∈ [x] such that

f(x) = f(m)+Jf( )(x−m).

Now we want f(x) = 0, so

f(m)+Jf( )(x−m) = 0.

with Jf the Jacobian matrix of f, assumed invertible for the sake of
simplicity. Thus

x = m−J−1
f ( )f(m).

Now, since the value of is not known, we can only write

x ∈m−J−1
f ([x]) f(m),

or rather
x ∈

[
m−J−1

f ([x]) f(m)
]
∩ [x] .
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Interval Newton Method

This suggest an iterative method

[x]k+1 =
[
m−

[
J−1
f

](
[x]k

)
f(m)

]
∩ [x]k ,

which is an example of contractor. Actually a lot of details
skipped...

not necessary to assume that the Jacobian matrix is invertible,
if [x]0 too large, it is split into subboxes [x] to be explored.

Note that
no solution can be lost
can prove that no solution exists
solution approximate but guaranteed.
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Set Inversion

Let ym(·) be a vector function from parameter space to data space.

Assume ym(p) should belong to Y .

We want to characterize the set of all feasible values of p that
make the model OK:

S= {p ∈ P0 |ym(p) ∈ Y }= y−1
m (Y )

This is set inversion.
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Set Inversion

?

p2

p1

y pm( ) YP0

Parameter space Data space

Characterization of S performed with SIVIA (for set inversion
via interval analysis).
Assumes an inclusion function [ym] (·) is available for ym(·).
S bracketted between inner and outer approximations.

18/54



Examples of Set-Estimation Problems
Interval Tools for Set Estimation

Returning to Examples
Conclusions

Computing with intervals
Solving systems of nonlinear equations
Inverting relations between sets
Optimizing nonconvex cost functions
Robust tuning

SIVIA

?

YY

p2

p1

P0

Parameter space Data space

ym

[ ]([ ])pym

([ ])p

Yellow box is indeterminate.
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SIVIA

?

Y

p2

p1

P0

Parameter space Data space

ym

[ ]([ ])pym

([ ])p

Red box proven to be outside S.
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SIVIA

?

YY

p2

p1

ym

[ ]([ ])pym

P0

Parameter space Data space

([ ])p

Green box proven to be inside S.
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SIVIA

By bisecting indeterminate boxes that are large enough and testing
the resulting subboxes, SIVIA partitions prior feasible space P0
into

boxes inside S
boxes outside S
indeterminate boxes (which could be split to get a more
accurate characterization of S).

Splitting in all directions induces exponential complexity. So
splitting should be avoided whenever possible. Hence the
importance of contractors.
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SIVIA with Contractors

? ?
Contractor

p2

p1

X0

Parameter space

p2

p1

Parameter space

Contractors make it possible to reduce the size of indeterminate
boxes without bisection.
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Guaranteed Optimization: Hansen’s Algorithm

Three ideas, already behind the scene when solving sets of
equations or performing set inversion, are implemented in Hansen’s
algorithm. They are

1 Eliminate
2 Contract
3 Divide & conquer

We assume f (·) is to be minimized, with no active constraint.
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Eliminate

Consider f (x) = x4 −4x2, to be minimized over [−10,10].

f (1) =−3 and f ([2,3]) = [0,45] prove that [2,3] contains no global
minimizer and [2,3] can thus be eliminated.

25/54



Examples of Set-Estimation Problems
Interval Tools for Set Estimation

Returning to Examples
Conclusions

Computing with intervals
Solving systems of nonlinear equations
Inverting relations between sets
Optimizing nonconvex cost functions
Robust tuning

Eliminate Via Midpoint Test

If f (·) is to be minimized and f̃ is an upper bound of f ∗, then any
[x] such that inf ([f ] ([x]))> f̃ can be eliminated.

f x( )
[ ]x 3 [ ]x 6[ ]x 5[ ]x 4 [ ]x 8[ ]x 7[ ]x 2[ ]x 1

f
~       
 

   

    

  

 

m([ ] )x 0

x

[ ]f x([ ])
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Eliminate Via Monotonicity Test

Any unconstrained optimizer x∗ of a differentiable f (x) should
satisfy g (x∗) = f

x (x
∗) = 0,

so any [x] such that 0 /∈ [g] ([x]) can be eliminated.

[ ]x 1 [ ]x 2 [ ]x 3 [ ]x 4 [ ]x 5

g x( )

x

[ ]g x([ ])
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Eliminate Via Convexity Test

f (·) to be minimized =⇒ should be locally convex at x∗ =⇒ its
Hessian H(x∗) should have no negative eigenvalue

=⇒ any [x] such that ∃i |[hii ] ([x])< 0 can be eliminated.

[ ]x 1 [ ]x 2 [ ]x 3 [ ]x 4 [ ]x 5

f x( )

h x( )

x

[ ]h x([ ])
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Contract

Any unconstrained (local or global) optimizer x∗ should satisfy

g (x∗) =
f
x
(x∗) = 0.

So a Newton contractor can be used to solve

g (x) = 0

over [x] and thus reduce/eliminate/split any box of interest [x].
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Divide and Conquer

1 Try to eliminate the (possibly very large) search box of interest
[x]0 (you may succeed at doing so, for instance if there is no
unconstrained minimizer of the cost function over [x]0...).

2 If box resists elimination, try to contract it.
3 Split box in two subboxes, each of which will become a search

box of interest, unless too small.
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Guaranteed Robust Tuning

Specifications often boil down to inequalities to be satisfied

f(c,p)> 0,

with c ∈ Spriorc a vector of tuning parameters and p ∈ Sp a vector of
uncertain process parameters.
We look for one c ∈ Spriorc such that

∀p ∈ Sp, f(c,p)> 0,

and assume for simplicity that Spriorc and Sp are boxes. The
algorithm consists of two procedures: FPS (for Feasible Point
Searcher) and CSC (for Computable Sufficient Conditions).
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CSC Procedure

Inputs: uncertainty box Sp for process parameters, box of interest
[c] for tunable parameters. Output: suitability of [c].

1 Stack = Sp.
2 Unstack into [p].
3 If ∃i |[f ]i ([c] , center (p))! 0, return “no robust tuning in [c]”.
4 If [f] (center (c) , [p])> 0, go to Step 7.
5 If width([p]) too small to iterate, return “[c] indeterminate”.
6 Bisect [p] and stack the two resulting boxes.
7 If stack nonempty, go to Step 2.
8 Return “center ([c]) is a robust tuning”.

32/54



Examples of Set-Estimation Problems
Interval Tools for Set Estimation

Returning to Examples
Conclusions

Computing with intervals
Solving systems of nonlinear equations
Inverting relations between sets
Optimizing nonconvex cost functions
Robust tuning

FPS Procedure

Organizes a systematic examination of Spriorc by CSC.

1 Call CSC. If it returns “center ([c]) is a robust tuning”, do
likewise.

2 If CSC returns “no robust tuning in [c]”, go to Step 4.
3 Bisect [c] and push the two resulting boxes into the queue.
4 If queue nonempty, pull its first box into [c] and go to Step 1.
5 Return “no feasible robust tuning in Spriorc ”.

As there might be a large set of robust tunings, one might look for
the optimal one in some sense (minimax procedure, not considered
here).
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Returning to Examples

Let us go back to introductory examples to

address them with IA tools,
find more about the advantages, disadvantages and limitations
of IA tools.
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Steward-Gough Plateform

Configuration of mobile plate wrt base specified by x
(dimx = 6).
Components of x include three Euler angles.
Easy to compute the lengths of the six limbs as g(x), using
trigonometric functions.
Finding all possible configurations amounts to solving

f(x) = 0, where f(x) = g(x)−gm,

with gm the vector of the measured lengths of the six limbs.
Interval Newton applicable, even in the most complex case of
non-planar base and mobile plate.
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Interval Newton Solutions for the SG plateform
(Non-planar base and mobile plate)

Algorithm finds ten boxes, associated with as many solutions.
Each box proved to contain one solution only (by fixed-point
theorem).
All real solutions found, some of them irrealistic as mobile
plate crashes into base (not explicitely forbidden...).
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Interval Newton Versus Computer Algebra

Interval Newton has several advantages over the use of elimination
theory:

No need to make the equations polynomial (at the cost of
increasing the number of unknown and equations from 6 to 9).
No need to solve a high-degree polynomial equation
numerically.
Only real solutions are obtained.
Uncertainty on the measured lengths of the limbs can be taken
into account.
Solutions approximate but guaranteed, and given with their
precision.
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Robust Control
Characterizing stability domains

We want to make sure stability is guaranteed for any value of
the uncertain p.
A linear time-invariant continuous-time model is stable iff all
roots of its characteristic equation have strictly negative real
parts.
Routh-Hurwitz criterion translates this into a finite number of
inequalities that p must satisfy.
SIVIA applicable to characterize the set of all values of p that
correspond to a stable model.
Ackermann benchmark: unstable disk inside a stable region.
The smaller the disk, the more difficult the test becomes.
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Easy Ackermann Test

3 2 1 0 1 2 3 4 5 6 7
3

2

1

0

1

2

3

4

5

6

7

p1

p2

Unstable disk clearly visible.
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Difficult Ackermann Test

p1

p2

3 2 1 0 1 2 3 4 5 6 7
3

2

1

0

1

2

3

4

5

6

7

Unstable disk reduced to point (1, 1). SIVIA was unable to prove
that this point was unstable, but generated an indeterminate box
around this point (too small to be visible).
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IA Versus Kharitonov

If the coefficients of the characteristic polynomial belong to
independent intervals, then celebrated Kharitonov theorem provides
necessary and sufficient conditions for stability, which involve the
computation of the roots of only four deterministic polynomials.

SIVIA can deal with much more complex dependencies of the
coefficients of the characteristic polynomial in p, as examplified by
Ackermann’s test.
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IA Versus Monte-Carlo

A commonly used approach to study uncertain systems is by
randomly picking values of p. There is, however, no guarantee that
the problematic cases will be detected (and in the case of the
difficult Ackermann test this is out of the question).

SIVIA gives guaranteed results for general dependencies of the
coefficients of the characteristic polynomial in p.
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Robust Tuning of a PID Controller 1/3

Process described by transfer function

H(s,p) =
K 2

0
(1+Ts)(s2+2 0s + 2

0 )
.

Uncertain process parameter vector p consists of:
Static gain K ∈ [0.95,1.05]
Damping factor ∈ [0.95,1.05]
(Undamped) natural pulsation 0 ∈ [0.95,1.05]
Negative time constant T ∈ [−1.05,−0.95]

Because of negative time constant, process is open-loop unstable.
PID controller inserted in the forward path of a control loop with
negative unity feedback.
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Robust Tuning of a PID Controller 2/3

PID transfer function taken as

C (s,c) =
c1 + c2s + c3s2

s
.

Characteristic equation of resulting closed-loop is

s4+
(
2 0 +T−1)s3+

(
2 0T−1+ 2

0
(
1+ c3KT−1))s2

+ 2
0 (1+ c2K )T−1s + 2

0Kc1T−1 = 0.

Kharitonov’s theorem useless here, but FPS + CSC algorithm
applicable.
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Robust Tuning of a PID Controller 3/3

Routh criterion provides necessary and sufficient conditions for
stability, which can be written as

f(c,p)> 0,

with dimc= 3, dimp= 4 and dim f(c,p) = 5. In
Spriorc = [−10,10]× [−10,10]× [−10,10], FPS + CSC finds, in the
blink of an eye, the robust controller

C (s) =−0.625+3.75s +8.75s2

s
,

guaranteed to stabilize all uncertain processes considered.
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Guaranteed Parameter Estimation
Estimating the parameters of a compartmental model

Compartmental models widely used in biology, e.g., to describe the
fate of drugs in living entities.

1

k
01

k
21

k
12

2

u
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Model Equations

State equation
{

ẋ1 =−(p1 +p3)x1 +p2x2,
ẋ2 = p1x1−p2x2,

with

x(0) =
(

1
0

)
.

Observation equation

ym (ti ,p) = x2 (ti ,p) i = 1 · · ·N.
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Problem To Be Solved

Find
S= {p |J (p) is minimal} ,

where cost function J is

J (p) =
N

i=1
[y (ti)− ym (ti ,p)]2 .

Hansen’s algorithm applicable.
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Ingredients For Global Optimization

Inclusion functions for cost and its gradient computed via
formal derivation of gradient in terms of sentitivity of model
output to p,
formal derivation of ODEs satisfied by this sensitivity,
use of Müller’s theorem to derive deterministic ODEs that
bracket the behavior of uncertain ODEs,
use of guaranteed ODE solver (here VNODE) for these
deterministic ODEs,
use of contractors to reduce size of boxes of interest.
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Guaranteed Optimal Parameter Estimation

IA algorithm proves that all global optimizers of cost are in the sets
whose projections are presented below.

Symmetry suggests an identifiability problem that can be confirmed
by a theoretical study.
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Conclusions

IA provides guaranteed numerical characterization of sets of
interest for nontrivial problems.
When applicable IA has definite advantages over conventional
floatting-point numerical computations (and computer algebra
for that matter).
But it is not so easy to apply, and not always applicable (curse
of dimensionality, lack of efficient inclusion functions...).
Much remains to be done to make it part of the standard
numerical engineering toolbox.
Much has already been done though, as it is...
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Easier Than Ever To Compute With Intervals

Many books, code libraries, lists, including
http://www.cs.utep.edu/interval-comp/main.html

Ongoing standardization process IEEE P1788.

INTLAB library for computing with intervals in MATLAB.
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