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Description

Both in computer algebra and in numerical analysis, the resolution of systems of poly-
nomial equations is a central problem. In computer algebra, this problem is often
tackled using rewriting techniques, such as the computation of Gröbner bases or reg-
ular chains. In numerical analysis, one of the most successful methods is based on
numerical homotopies. The idea is quite simple and goes as follows.

Starting with an input system, one first constructs a “simpler” system with the “same
characteristics”. For instance, given the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
P1(x,y) = x2−y2 +x+3=0
P2(x,y) = x2 +2xy+7y2−8y+2=0,

(1)

we may for instance take

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
Q1(x,y) = x2−𝛼1 =0 (𝛼1 =1+i)
Q2(x,y) = y2−𝛼2 =0 (𝛼2 =2− i)

(2)
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for our simpler system. Both systems indeed have the “same characteristics” in the
sense that deg Q1 = deg P1 = 2 and deg Q2 = deg P2 = 2. In particular, we expect both
systems to admit the same number of solutions. By construction, the solutions (x, y) ∈
{( 𝛼1√ , 𝛼2√ ), ( 𝛼1√ ,− 𝛼2√ ), (− 𝛼1√ , 𝛼2√ ), (− 𝛼1√ ,− 𝛼2√ )} of (2) are easy to compute. Now
the main idea is to continuously deform the second system into the first system using a
homotopy continuation:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
H1

t(x,y) = (1− t)P1(x,y)+ tQ1(x,y)=0
H2

t(x,y) = (1− t)P2(x,y)+ tQ2(x,y)=0.
(3)

Indeed, at t= 1 and t= 0, the homotopy system (3) reduces to (2) and (1), respectively.
In order to obtain the solutions of (1), it thus suffices to follow the solutions of (3) from
t = 1 until t = 0, using standard numerical algorithms. For instance, knowing the
approximate solutions of (1) at a given time t = t0, we may find approximate solutions
at t = t0 + 𝛿 using Newton's method, starting with the approximations at t = t0 as our
ansatz. It is also possible to design higher order (e.g. Euler-type) methods, which allow
us to take larger steps 𝛿.

Context

There is an extensive literature on numeric homotopies [1, 3, 4, 20, 22]. Practical prob-
lems are usually not generic, which means that there may be multiple solutions or solu-
tion paths z(t) that go to infinity (i.e. there are less isolated solutions than predicted by
the Bézout bound). Special strategies, called end-games, need to be used near t = 0 to
cope with multiple solutions. Solution paths that go to infinity typically occur for
sparse systems, when the supports of the polynomial Pk are special. Refinements of the
Bézout bound exist for this situation and special homotopies can be constructed that
preserve the support properties and the predicted number of solutions by this refined
bound. Finally, there exist several techniques to certify the numeric solutions
at t=0 [7, 9, 14, 19] or all along the path [2, 6, 9, 23].

In favorable cases, existing software for numeric homotopies [1, 5, 16, 17, 21] is many
times faster than symbolic software for the computation of Gröbner bases. However,
many things can go wrong during numeric path tracking: there might be singularities
on or near the paths, end-games for high multiplicities may incur a large performance
penalty, the working precision might be insufficient, the numeric conditioning might
be bad, etc. Existing software packages typically require manual fine-tuning of internal
parameters in order to treat the most interesting examples.

In the context of the ERC ODELIX project (of which this proposal is a part), we are
interested in polynomial systems that are verified by the coefficients of truncated
power series solutions of differential equations. Such systems come with a special
structure that we wish to understand better and then exploit.

Methodology

The thesis will begin by gathering state of the art literature on numerical polynomial
system solving, along with software implementation. We will focus on the case of
square homogeneous systems with regular solutions. More specifically, building
on [9], the following theoretical question will be addressed: How to perform reliable
homotopy continuations in the most efficient way?
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The second part of the thesis will be devoted to non-regular solutions (what are the
most efficient methods to numerically compute multiple zeros and certify them?) and
systems that arise from differential equations (how to exploit this special structure and
what is the complexity of homotopy continuation for this application?).

The practical component of the thesis concerns the software implementation of reliable
homotopy methods. We intend to distribute the implementation inside a dedicated
library as free software under the GNU General Public License. Several tools for reli-
able arithmetic are already available in MATHEMAGIX [8, 12, 15], which may potentially
be used for the implementation work.

More specifically, we plan to work on the following implementation issues:

• Development of algorithms for the efficient evaluation of the input polynomials for
various numerical and reliable data types, possibly using automatic code genera-
tion and just-in-time compilation.

• Implementation of additional reliable data types for the efficient certification of
numeric homotopy steps, such as special kinds of Taylor models [18] and ball arith-
metic [11].

• Development of multi-threaded homotopy solvers.

• Make the homotopy solvers benefit from hardware SIMD (Single Instruction Mul-
tiple Data) vector instructions, potentially based on tools available in the MATH-
EMAGIX system [10, 13].

Expected results

Concerning the theoretical part, a first article will be devoted to a new algorithm for the
reliable solving of square homogeneous systems with regular solutions, along with a
prototype software implementation: the complexity will be parametrized by condition
numbers and should not exceed the worst case bounds proved by Shub and Smale.

Subsequent theoretical papers will concern multiple and clustered solutions and/or
applications to differential equations. The theoretical papers will be submitted to jour-
nals or conferences in computer algebra or reliable computing.

The practical counterpart will be a high-level solver that automatically selects the most
efficient low-level method(s) for solving the specific input problem. In particular, it
should not require any manual fine-tuning of parameters or verifications that we are
indeed in a zone where numerical correctness is guaranteed. In addition it should com-
pete with the best purely numerical implementations. The final software library is
expected to be presented in a wide audience journal such as ACM Transactions on Math-
ematical Software.
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